首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined hydrothermal/hydrogen reduction method has been developed for the mass production of helical carbon nanotubes (HCNTs) by the pyrolysis of acetylene at 475 °C in the presence of Fe3O4 nanoparticles. The synthesized HCNTs have been characterized by high‐resolution transmission electron microscopy, scanning electron microscopy, X‐ray diffraction analysis, vibrating sample magnetometry, and contact‐angle measurements. The as‐prepared helical‐structured carbon nanotubes have a large specific surface area and high peroxidase‐like activity. Catalysis was found to follow Michaelis–Menten kinetics and the HCNTs showed strong affinity for both H2O2 and 3,3′,5,5′,‐tetramethylbenzidine (TMB). Based on the high activity, the HCNTs were firstly used to develop a biocatalyst and amperometric sensor. At pH 7.0, the constructed amperometric sensor showed a linear range for the detection of H2O2 from 0.5 to 115 μM with a correlation coefficient of 0.999 without the need for an electron‐transfer mediator. Because of their low cost and high stability, these novel metallic HCNTs represent a promising candidate as mimetic enzymes and may find a wide range of new applications, such as in biocatalysis, immunoassay, and environmental monitoring.  相似文献   

2.
氯化血红素作为过氧化物模拟酶与HRP的比较研究   总被引:5,自引:0,他引:5  
用荧光光谱和紫外-可见吸收光谱研究了氯化血红素(hemin)催化过氧化氢与对羧基苯丙酸反应的动力学和反应产物,表明hemin同时具有模拟过氧化物酶、过氧化氢酶的活性,在反应过程中hemin自身被氧化分解。hemin催化反应的产物除与天然的辣根过氧化物酶(HRP)催化的产物相同(λex/λem=310nm/406nm)外,还有激发峰在258nm和300nm,发射峰在360nm的荧光物质。通过对产物光谱特性的比较,研究了hemin和HRP的特异性差异。该研究结果对进一步筛选和研究高特异性过氧化物模拟酶具有重要的指导意义。  相似文献   

3.
共价有机框架(Covalent Organic Frameworks, COFs)是一类由轻质元素通过可逆共价键连接而成的晶型多孔有机材料。因具有高比表面积、低密度、规则的孔隙和易于功能化等独特的性能和结构,COFs在气体吸附、化学传感和非均相催化等领域有着广泛的应用前景。近年来,COFs逐渐显现出在固定化酶和模拟酶领域的应用潜力,由于可以轻松定制COF上的官能团以保持COF与酶之间的特定相互作用,因此COF成为有吸引力的酶固定基质。此外,COF的连续且封闭的开放通道为渗透酶提供了良好的微环境。同时,探索了COF模拟酶的特征,通过“从下到上”的方法或后修饰策略设计了COF模拟酶。这不仅扩展了固定化酶载体材料的研究和应用范围,还为模拟酶仿生催化提供了新的研究思路。本文综述了COFs固定化酶和作为纳米材料模拟酶(纳米酶)在生物催化领域的研究进展,详细讨论了COFs载体的合成和功能化策略、固定化酶方式,以及COFs纳米酶的设计理念、催化活性和选择性等内容。最后总结了目前COFs在酶催化领域所面临的挑战和未来发展的机遇。  相似文献   

4.
A ternary composite material based on Prussian blue, single‐walled carbon nanotubes and 1‐butyl‐3‐methylimidazolium hexafluorophosphate was prepared and tested for electrochemical detection of H2O2. The sensor allows amperometric detection of H2O2 at ?0.05 V, with a sensitivity of 137 mA M?1?cm?2. The nanocomposite provides a favorable microenvironment for immobilization of horseradish peroxidase (HRP). Determination of xenoestrogenic compounds was performed by enzymatic oxidation at the surface of modified screen printed biosensor in the presence of H2O2. The developed electrochemical biosensors exhibited high sensitivity, low detection limits, good operational and storage stability, for detection of 4‐t‐butylphenol, 4‐t‐octylphenol, 4‐n‐nonylphenol and 4‐n‐nonylphenol ethoxylate.  相似文献   

5.
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.  相似文献   

6.
The development of a simple directly wearable approach for the rapid, specific and sensitive determination of biomarkers is of great importance to a variety of biomedical applications. Dental floss can provide a unique device platform for sensing of oral biomarkers. We show here for the first time the development of a smart dental floss for biosensing of glucose. The sensor was made by painting carbon graphite ink and Ag/AgCl ink on dental floss. Via the immobilization of glucose oxidase, we show the detection of glucose with a detection range of 0.048 mM to 19.5 mM and a response time of about 2 min. It is expected that our results could provide new exciting opportunities for the development of various flexible smart sensing devices in oral health applications.  相似文献   

7.
8.
9.
Enzymatic catalysis and control over macromolecular architectures from reversible addition‐fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein‐polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization.

  相似文献   


10.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(12):8758-8767
This article proposes a new electrochemical sensor for Escherichia coli (E. Coli) composed of poly(o-phenylenediamine) (PoPD) and CdS/FeS nanocomposites (PoPD|CdS/FeS). The preparation of the modified electrodes used for this purpose and their subsequent use as a sensor comprise a simple, fast and reproducible technique. The characterization of the CdS/FeS nanocomposites and their subsequent inclusion on PoPD was performed by X-ray diffraction (XRD), Raman, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM) and computational methods; For the nanocomposites an average size of 100 nm was obtained after applying a reduction potential for 5 s over the polymeric matrix. The electrochemical characterizations confirmed that the inclusion of the nanocomposites improved the amperometric response, allowing the developed material to be used as an electrochemical sensor for E. Coli. The figures obtained gave the linear equation j = -6.89 × 10−14 × CFU + 5.64 × 10−5, with an R2 of 0.995, for 10 replicates. Furthermore, the limit of detection (LOD) was 6.1 × 105 CFU/mL, and the limit of quantification (LOQ) was 6.1 × 106 CFU/mL.  相似文献   

12.
Carbonic anhydrase is a zinc metalloenzyme that catalyzes the hydration of carbon dioxide to bicarbonate. Replacing the active-site zinc with manganese yielded manganese-substituted carbonic anhydrase (CA[Mn]), which shows peroxidase activity with a bicarbonate-dependent mechanism. In the presence of bicarbonate and hydrogen peroxide, (CA[Mn]) catalyzed the efficient oxidation of o-dianisidine with kcat/KM=1.4 x 10(6) m(-1) s(-1), which is comparable to that for horseradish peroxidase, kcat/KM=57 x 10(6) m(-1) s(-1). CA[Mn] also catalyzed the moderately enantioselective epoxidation of olefins to epoxides (E=5 for p-chlorostyrene) in the presence of an amino-alcohol buffer, such as N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES). This enantioselectivity is similar to that for natural heme-based peroxidases, but has the advantage that CA[Mn] avoids the formation of aldehyde side products. CA[Mn] degrades during the epoxidation limiting the yield of the epoxidations to <12 %. Replacement of active-site residues Asn62, His64, Asn67, Gln92, or Thr200 with alanine by site-directed mutagenesis decreased the enantioselectivity demonstrating that the active site controls the enantioselectivity of the epoxidation.  相似文献   

13.
异双核配合物金属胶束模拟磷酸酯酶催化磷酸单酯水解   总被引:1,自引:0,他引:1  
 合成和表征了四种含过渡金属离子Cu(Ⅱ)和Ni(Ⅱ)的草酰胺桥联异双核配合物,并将这些配合物与Brij35表面活性剂胶束构成金属胶束作为金属水解酶模拟物用于催化对硝基苯酚磷酸单酯(NPP)水解. 研究了金属胶束对NPP水解反应的催化机理,建立了异双核配合物催化NPP水解的动力学数学模型. 结果表明,四种草酰胺桥联异双核配合物在NPP水解反应中表现出较高的催化活性,随着胶束溶液pH的增大,配合物催化NPP水解的速率提高. 配合物中的两个金属离子在催化NPP水解过程中表现出较好的协同效应.  相似文献   

14.
用修饰法合成以透明质酸为骨架的两种新型GPX模拟酶: 硒化透明质酸SeHA及碲化透明质酸TeHA. 用红外光谱和核磁共振波谱对模拟酶的结构进行研究, 证明其修饰位点位于透明质酸的N-乙酰氨基葡萄糖的—CH2OH. 用二硫代双硝基苯甲酸(DTNB)法测定模拟酶的硒含量为1.2%. 通过模拟酶对3种不同底物过氧化氢(H2O2)、过氧化氢正丁烷(t-BuOOH)和过氧化氢异丙苯(CuOOH)的催化活性的研究结果表明CuOOH为该反应的最佳底物. 研究模拟酶催化谷胱甘肽(GSH)还原3种过氧化物的动力学发现, 反应速率与底物浓度的双倒数曲线均为平行的直线, 说明模拟酶反应的动力学机制与天然GPX相同, 为乒乓机制. 用2,4-二叔丁基甲基苯酚(BHT)法证明了该催化反应为非自由基机理, 且模拟酶不易被碘乙酸抑制.  相似文献   

15.
The imidazole derivatives (N,N‐bis(2‐ethyl‐5‐methyl‐imidazole‐4‐ylmethyl) amino‐propane (biap)) and its complexes containing cobalt or copper ion were synthesized in this study. The oxidation reaction of phenol with oxidant H2O2 catalyzed by the metallomicelle made of the complexes of imidazole groups and micelle (CTAB, Brij35, LSS) as the mimetic peroxidase was studied. The results show that the reaction rate for the catalytic oxidation of phenol increases by a factor of approximately 1×105 in the metallomicelle over that in the simple micelles or the pure buffer solution at pH=6.9 and 25°C. The catalytic effects changed with H2O2, temperature, pH, and surfactant kind in the catalytic reactive process are discussed. A kinetic mathematic model of the phenol oxidation catalyzed by the metallomicelle is proposed.  相似文献   

16.
Protein disulfide isomerase (PDI) and glutathione peroxidase 7 (GPx7) cooperatively promote the oxidative folding of disulfide (SS)‐containing proteins in endoplasmic reticulum by recognizing the nascent proteins to convert them into the native folds by means of SS formation and SS isomerization and by catalyzing reoxidation of reduced PDI with H2O2, respectively. In this study, new amphiphilic selenides with a long‐chain alkyl group were designed as hybrid mimics of PDI and GPx7 and were applied to the refolding of reduced hen egg‐white lysozyme (HEL‐R). Competitive SS formation at pH 4 using HEL‐R and glutathione (GSH) in the presence of the selenide catalyst and H2O2 showed that the amphiphilic selenides can preferentially catalyze SS formation of HEL‐R, probably on account of hydrophobic interactions between the protein and the catalyst. In contrast, simple water‐soluble selenides did not exhibit such behavior. In addition, when the pH of the solution was adjusted to 8.5 after the SS formation, surviving GSH promoted the SS isomerization of misfolded HEL to recover the native SS linkages. Thus, the amphiphilic selenides designed here could mimic the function of the PDI‐GPx7 system. The combination of a water‐soluble selenide and a long‐chain alkyl group would be a useful motif in designing medicines for both protein misfolding diseases and antioxidant therapy.  相似文献   

17.
该文设计了一种基于金属纳米模拟酶协同催化产生不溶性沉淀的"signal-off"型电化学免疫传感器用于超灵敏检测甲胎蛋白(AFP)。通过夹心免疫法将具有辣根过氧化物活性的二抗耦合物空心纳米金-铂钯纳米颗粒(HAuNPs-PtPdNPs-Ab2)固载在电活性物质铁氰化镍纳米颗粒修饰的电极上。在H2O2存在下,以AFP捕获的二抗耦合物中的HAuNPs和PtPdNPs作为辣根过氧化物模拟酶催化4-氯-1-萘酚(4-CN),并在电极界面生成不溶且不导电的沉淀物苯并-4-氯己二烯酮(4-CD),有效阻碍了电子传递,电化学信号显著降低,可用于AFP的定量检测。实验表明,该传感器对0.1 pg/mL~200 ng/mL AFP表现出良好的检测线性,检出限(S/N=3)为33 fg/mL。该传感策略具有协同催化作用,可提供一种新的多重信号放大方法用于改善传感器的灵敏度。  相似文献   

18.
This Review covers photonic crystals (PhCs) and their use for sensing mainly chemical and biochemical parameters, with a particular focus on the materials applied. Specific sections are devoted to a) a lead‐in into natural and synthetic photonic nanoarchitectures, b) the various kinds of structures of PhCs, c) reflection and diffraction in PhCs, d) aspects of sensing based on mechanical, thermal, optical, electrical, magnetic, and purely chemical stimuli, e) aspects of biosensing based on biomolecules incorporated into PhCs, and f) current trends and limitations of such sensors.  相似文献   

19.
We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)–magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non‐enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP–magnetic nanoparticle hybrids are supported on micron‐scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号