首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bulk hierarchical anatase‐titania/cellulose composite sheets were fabricated by subjecting an ultrathin titania gel film pre‐deposited filter paper to a solvo‐co‐hydrothermal treatment by using titanium butoxide as the precursor to grow anatase‐titania nanocrystallites on the cellulose nanofiber surfaces. The titanium butoxide specie is firstly absorbed onto the nanofibers of the cellulose substance through a solvothermal process, which was thereafter hydrolyzed and crystallized upon the subsequent hydrothermal treatment, leading to the formation of fine anatase‐titania nanoparticles with sizes of 2–5 nm uniformly anchored on the cellulose nanofibers. The resulting anatase‐titania/cellulose composite sheet shows a significant photocatalytic performance towards degradation of a methylene blue dye, and introduction of silver nanoparticles into the composite sheet yields an Ag‐NP/anatase‐titania/cellulose composite material possessing excellent antibacterial activity against both Gram‐positive and Gram‐negative bacteria.  相似文献   

2.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Hybrid nanofibers of ZnO precursors/PET were fabricated by electrospinning a nonaqueous poly(ethylene terephthalate) (PET) solution containing zinc acetate dihydrate. Scanning electron microscopy images showed that the as prepared nanofibers had smooth and uniform surfaces, and the diameter was decreased with increasing zinc acetate dihydrate content and reducing PET concentration. After the treatment by a mild process of immersing the fibers in ammonia‐ethanol mixtures (pH ≈ 9–11), the surface of the nanofibers became rough during the formation of ZnO nanocrystals in the fibers. High resolution transmission electron microscopy images showed that the mean particle size became smaller with increasing diameter of the polymer fibers and decreasing content of ZnO. Fourier transform infrared spectra confirmed the ZnO formation in the hybrid nanofibers. X‐ray diffractometry patterns indicated that ZnO had the Wurtzite structure. The formation and growth of ZnO nanocrystals in the nanofiber matrices was also influenced by the various other parameters, that is, the pH value of the reaction solution, the content of zinc acetate dihydrate within the fibers, the reaction time and temperature. Photoluminescence spectra under excitation at 300 nm revealed a broad and intense ultraviolet emission. The UV‐visible diffuse reflectance spectra demonstrated the blue shift in the absorbance curve, which was ascribed to the quantum confinement effects of ZnO nanoparticles in the hybrid materials. These hybrid nanofibers can potentially be used in light emitters, chemical sensors, photo‐catalysts and solar cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1360–1368, 2011  相似文献   

4.
Silicas with hierarchical porous architectures attracted much attention, due to their potential applications in catalysis and separation. Generally, they were prepared through dual‐ or triple‐templating approaches. Herein, mesoporous silica nanoparticles with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared using the self‐assemblies of a chiral low‐molecular‐weight amphiphile as templates through a single‐templating approach. The formation of the lamellar mesopores was studied by taking field‐emission scanning electron microscopy and transmission electron microscopy images after different reaction times. The lamellar pores were proposed to be formed by merging rod‐like micelles during the sol‐gel process. Moreover, helical nanofibers with rod‐like pore channels inside and lamellar mesopores on the surfaces were prepared with the addition of n‐octanol as a co‐structure‐directing agent.  相似文献   

5.
Water‐soluble thioglycolic acid (TGA)‐capped CdTe quantum dots (QDs) were synthesized in aqueous medium, and then encapsulated in a silica nanosphere by copolymerization of the TGA‐capped CdTe conjugated with (3‐aminopropyl)triethoxysilane (APS‐CdTe conjugate), free (3‐aminopropyl)triethoxysilane (=3‐(triethoxysilyl)propan‐1‐amine; APS), and tetraethyl orthosilicate (TEOS) in a H2O‐in‐oil reverse microemulsion consisting of Triton X‐100, octanol, cyclohexane, and H2O in the presence of aqueous NH3 solution. The characterizations by transmission electron microscopy (TEM) and luminescence spectroscopy shows that the luminescent nanoparticles are monodisperse, spherical, and uniform in size, ca. 50 nm in diameter with a regular core–shell structure. In addition, primary amino groups directly introduced to the nanoparticle's surface by using free APS in the nanoparticle preparation enable the nanoparticles to be used easier as a biolabel. The effects of pH and metal cations on the luminescence of the nanoparticles also suggest that the new nanoparticles could be useful probes for luminescent sensings of pH and Cu2+ ion.  相似文献   

6.
A novel method to prepare cadmium sulphide nanoparticles (CdS NPs) possessing nearly uniform size was adopted using eggshell membrane (ESM), under different pH conditions. Significant yield of CdS NPs with smallest possible size was obtained by increasing the pH of the reaction medium from acidic to alkaline. The above prepared CdS NPs have been characterized by UV-vis absorption as well as emission spectra, powder X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The efficiency of the above prepared CdS NPs as a catalyst for the photodegradation of toluidine blue (TB) dye, as a function of pH as well as the ratio between the catalyst and the substrate was studied after irradiation with UV light. The results showed that an efficient interaction took place between the catalyst and the substrate to cause degradation of the selected dye. A maximum degradation of toluidine blue dye (90%) was observed at pH 8 which is higher than that of the efficiencies at pH 4 and pH 6.  相似文献   

7.
In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S‐CBD). The as‐prepared CdS/TiO2NTs was characterized by field‐emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiO2NTs. The amperometric It curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs.  相似文献   

8.
Citrate‐stabilized gold nanoparticles 15 nm and 33 nm in diameter were transferred concomitantly with a monolayer of positively charged polyaniline by Langmuir–Blodgett transfer at pH 5 onto a conducting indium‐doped tin oxide (ITO) support. Films consisting of one to three layers of polyaniline with thicknesses of 1–3 nm were prepared and characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy. After electro‐oxidation of the Au nanoparticles in 0.1 M KCl, cavities were left behind in the film that could be analyzed by SEM. These cavities were able to recapture analyte nanoparticles from a solution of pH 10 and showed size‐exclusion properties. The amount of nanoparticles taken up by the cavities was conveniently analyzed by measuring the charge associated with the electro‐oxidation of these particles in 0.1 M KCl after the film had been rinsed with water. The size‐exclusion properties improved with the number of Langmuir–Blodgett layers transferred.  相似文献   

9.
One‐dimensional nanofibers have attracted tremendous attention because of their potential applications. Electrospinning technology enables industrial production of these nanofibers. This study aims to fabricate one‐dimensional ZnO doped TiO2 by electrospinning and to characterize these hybrid nanofibers. The nanocomposite was prepared using colloidal gel composed of zinc nitrate, titanium isopropoxide and polyvinyl acetate. X‐ray diffraction, energy dispersive x‐ray analysis and transmission electron microscopy analysis confirmed the purity and crystalline nature of this material, whereas the diameter of these nanofibres estimated from scanning electron microscope (SEM), field emission SEM and transmission electron microscopy are between 200 and 300 nm. Cell counting with Kit‐8 assay at regular time intervals and phase‐contrast microscopy data revealed that C2C12 cells proliferated well on ZnO/TiO2 nanofibers between 1 and 10 µg/ml, and cellular attachments are visible by SEM. The nanostructured ZnO/TiO2 hybrid nanofibers show higher cell adhesion, proliferation and spreading behavior compared with the titanium substrate and control. Our study suggests that ZnO/TiO2 nanofibers could potentially be used in tissue engineering applications. The scalability, low cost, reproducibility and high‐throughput capability of this technology is potentially beneficial to examine and optimizing a wide array of cell‐nanofiber systems prior to in vivo experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Polyacrylonitrile(PAN)/Fe 3 O 4 composite nanofibers were successfully obtained through electrospinning and sol-gel technology. The resulting magnetic Fe 3 O 4 nanoparticles were homogeneously distributed on the surface of PAN nanofibers and the diameters of polyacrylonitrile nanofibers and nanoparticles were easily controlled, respectively. The distribution of Fe 3 O 4 nanoparticles inside the nanofibrous composite was investigated by field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction reveals the presence of Fe 3 O 4 nanoparticles in the composite nanofiber. The resulting sample shows a super paramagnetic behavior.  相似文献   

11.
As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under conventional synthesis conditions. In this work, we report the first example of blue‐emitting CdTe NCs directly synthesized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimization of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2×10?5 mol/L, to get a slow growth rate after nucleation. The as‐prepared blue‐emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as‐prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time‐resolved PL decay and X‐ray photoelectron spectroscopy (XPS) results show the as‐prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions.  相似文献   

12.
Electrospun nanofibers have attracted great attention as potential reinforcements in composite application due to their high specific surface area, high porosity, and versatility. Because the electrospun nanofibers exhibit relatively low mechanical strength due to low crystallinity and random alignment, many researchers have tried to enhance the mechanical strength through various approaches, such as heat treatment and fiber orientation control. These methods, however, are difficult to control and require the use of high temperatures and sophisticated apparatuses, and high costs. In this study, we investigate a novel microwave technique to fabricate high‐strength electrospun meta‐aramid nanofiber mats. To optimize the microwave irradiation conditions, the electrospun nanofiber was treated at varying levels of moisture and for different irradiation times. Field emission scanning electron microscopy was used to observe the surface morphology of the electrospun nanofiber mats at the different irradiation times. The changes in the crystallinity and thermal properties were investigated using X‐ray diffraction and thermogravimetric analysis measurements. Tensile tests were performed to measure the mechanical strength of the meta‐aramid nanofiber mats with respect to each parameter. As a result, any residual solvents and salts were removed, and the degree of crystallization was dramatically increased by microwave irradiation under wet conditions. These effects led to a 2.8‐fold increase in the tensile strength of the nanofiber mats compared with an untreated mat. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 807–814  相似文献   

13.
A facile spinning‐based strategy was developed to fabricate chitosan (CS) surface nanofiber‐based affinity membranes for protein adsorption. The core–shell nanofiber mat of nylon 6–CS was prepared via coaxial solution blowing process. The nanofibers have a diameter range of 60–300 nm. The core–shell structure was confirmed by transmission electron microscopy, and CS was observed as a thin layer that uniformly adhered to the core. The dye ligand of cibacron blue F3GA (CB F3GA) was further covalently immobilized on the nanofibers with a content of 425 µmol/g. The pristine and CB F3GA‐attached mats were studied in protein adsorption. High bovine serum albumin adsorption capacities of 91.9 and 219.6 mg/g were obtained for pristine and CB F3GA‐attached mats, respectively. Given its properties of high flux rate and low pressure drop, CB F3GA‐attached nylon 6–CS nanofiber mat meets the requirements of highly effective affinity membrane chromatography. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Self-assembling peptide amphiphile molecules have been of interest to various tissue engineering studies. These molecules self-assemble into nanofibers which organize into three-dimensional networks to form hydrocolloid systems mimicking the extracellular matrix. The formation of nanofibers is affected by the electrostatic interactions among the peptides. In this work, we studied the effect of charged groups on the peptides on nanofiber formation. The self-assembly process was studied by pH and zeta potential measurements, FT-IR, circular dichroism, rheology, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The aggregation of the peptides was triggered upon neutralization of the charged residues by pH change or addition of electrolyte or biomacromolecules. Understanding the controlled formation of the hydrocolloid gels composed of peptide amphiphile nanofibers can lead us to develop in situ gel forming bioactive collagen mimetic nanofibers for various tissue engineering studies including bioactive surface coatings.  相似文献   

15.
XRD and TEM characterisation evidenced the formation of well-dispersed CdS nanoparticles inside a phosphate glass matrix. Optical absorption and time-resolved photoluminescence study were carried out on the prepared glass samples. Optical absorption revealed the fast character of the growth of CdS nanoparticles in this medium. Photoluminescence spectra showed only one large band with a maximum at almost 740 nm, which was associated to transitions between energy levels within the bandgap of the CdS nanoparticles. From the steady state and time-resolved measurements, it was suggested that the emission comes mainly from sulfur vacancies inside the nanocrystals and on its surface, which act as deep traps for the photogenerated electrons. The creation of such vacancies was attributed to the loss of sulfur during the glass preparation as evidenced from a chemical analysis using energy dispersive X-ray spectrometry. These traps may be also induced by the fast growth of CdS nanocrystals in this matrix or laser exposure during PL measurements. These CdS-doped glasses with an intense absorption in the UV–Vis region and a large emission band with long lifetime and a large Stokes-shift are adequate for luminescent solar concentrators, photocatalytic applications and solid-state lasers.  相似文献   

16.
Luminescent poly(styrene/thiophene) (PSt/PT) core/shell nanoparticles were prepared by oxidative polymerization in the presence of PSt seed particles. PSt seed particles with uniform size distribution were prepared with an anionic surfactant by an emulsion polymerization process, and were used as a template to prepare monodispersive PT‐coated nanoparticles. A luminescent Polythiophene (PT) layer was formed on the surface of PSt nanoparticles by oxidation polymerization with iron chloride (FeCl3) and hydrogen peroxide (H2O2). The mechanism of core/shell formation was found to be the interface‐dominant polymerization induced by the electrostatic attraction between the sulfonate group of anionic surfactant and Fe3+ ions after the diffusion of thiophene monomer to the PSt nanoparticles. Field‐emission scanning electron microscopy and transmission electron microscopy (TEM) proved the core/shell structure, which provided key evidence that PT was incorporated onto the surface of PSt nanoparticles. In addition, the effect of the PT shell thickness on photoluminescent (PL) intensity was investigated by changing the shell thickness of PSt/PT nanoparticles. We observed that the PL intensity increased up to about 30 nm of PT shell thickness, and then decreased due to self‐absorption. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5968–5975, 2008  相似文献   

17.
The metallized hybrid nanofiber webs were prepared by using a combined technology of electrostatic spinning and metallization. The electrospun polyurethane (PU) nanofibers were metallized with different thicknesses of copper layer via metal vapor deposition technique. The thickness of the copper layer, which ranges from 10 to 100 nm, was monitored and controlled. The resultant metallized hybrid nanofiber webs were characterized using field emission scanning electron microscopy (FE‐SEM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). FE‐SEM images demonstrated that the nanoscaled copper layers are well deposited on the surface of the PU nanofibers. TGA result indicated that the thermal stability of the metallized hybrid PU nanofibers was dramatically enhanced due to the barrier effects of thin metallic copper layer. WAXD data confirmed that the crystalline copper layers were well deposited onto the PU nanofibers. Moreover, the mechanical properties of the metallized hybrid PU nanofiber webs were increased with increase in the thickness of deposited copper layer. Unlike the organic PU nanofiber webs, it was observed that the metallized hybrid PU nanofiber webs showed higher conductive properties depending on the thickness of the deposited copper layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A facile strategy for the controllable growth of CdS nanoparticles at the periphery of MoS2 en route the preparation of electron donor‐acceptor nanoensembles is developed. Precisely, the carboxylic group of α‐lipoic acid, as addend of the modified MoS2 obtained upon 1,2‐dithiolane functionalization, was employed as anchor site for the in situ preparation and immobilization of the CdS nanoparticles in an one‐pot two‐step process. The newly prepared MoS2/CdS hybrid material was characterized by complementary spectroscopic, thermal and microscopy imaging means. Absorption spectroscopy was employed to register the formation of MoS2/CdS, by observing a broad shoulder centered at 420 nm due to CdS nanoparticles, while the excitonic bands of MoS2 were also evident. Moreover, based on the efficient quenching of the characteristic fluorescence emission of CdS at 725 nm by the presence of MoS2, strong electronic interactions at the excited state between the two species within the ensemble were identified. Photoelectrochemical assays of MoS2/CdS thin‐film electrodes revealed a prompt, steady and reproducible anodic photoresponse during repeated on‐off cycles of illumination. A significant zero‐current photopotential of ?540 mV and an anodic photocurrent of 1 μA were observed, underlining improved charge‐separation and electron transport from CdS to MoS2. The superior performance of the charge‐transfer processes in MoS2/CdS is of direct interest for the fabrication of photoelectrochemical and optoelectronic devices.  相似文献   

19.
Surface‐modified CdS nanoparticles selectively dispersed in hexagonally packed poly(ethylene oxide) (PEO) cylinders of poly(styrene‐b‐ethylene oxide) (PSEO) block copolymers were prepared. The photoluminescence and ultraviolet–visible characteristics of the presynthesized CdS nanoparticles in N,N‐dimethylformamide and in PEO domains of the PSEO block copolymers were determined. Because of strong interactions between the CdS nanoparticles and PEO chains, as shown by Fourier transform infrared spectroscopy, the incorporation of the CdS nanoparticles prevented the PEO cylinders from properly crystallizing; this was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. The intercylinder distance between the swollen and reduced‐crystallinity CdS/PEO cylinders in turn increased, as confirmed by small‐angle X‐ray scattering and transmission electron microscopy. At a high CdS concentration (43 wt % or 8.3 vol % with respect to PEO), however, the hexagonally packed cylindrical nanostructure of the PSEO diblock copolymers was destroyed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1220–1229, 2005  相似文献   

20.
This study deals with an investigation on the preparation and physicochemical interactions of ZnO nanoparticles with acid functionalized porphyrin [5‐mono‐(4‐carboxyphenyl)‐10,15,20‐triphenylporphyrin (CPTPP)] for photovoltaic applications in a detailed manner. Zinc acetate and sodium hydroxide were used as the starting materials for the synthesis of ZnO nanoparticles at 60 °C in an alcoholic medium. The freshly prepared fine particles were then functionalized with CPTPP. Both the virgin and pregnant ZnO particles were characterized by using UV‐Visible spectrophotometry (UV), fluorescence emission (PL), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The band gap energy obtained for ZnO particles, having a value of 3.47 eV, shows significant quantum confinement effect and enhanced photophysical activity. FTIR analysis of the doped ZnO nanostructures showed the presences of some chemical species. SEM analysis revealed a clear change in the surface morphologies of undoped ZnO. The average crystallite size of nanoparticles, calculated from XRD peaks, was found in the nano regime. The lattice parameters calculated for ZnO nanocrystals were also found in good agreement with those given in the literature. From the enhancement in the red shift of the UV‐Vis spectra, it is concluded that hybridization of acid functionalized porphyrin can cause a significant expansion in the total absorption region of ZnO semiconductor for photovoltaic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号