首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭丰启  谢普会 《中国化学》2009,27(7):1427-1433
利用紫外和荧光光谱技术研究了共轭聚合物PPE4+分别在溶液和薄膜中与纳晶CdTe间的能量传递现象。通过静电层层组装技术制备了混杂有纳晶CdTe的PPE4+薄膜发光二极管,并测试了其电致发光性质。结果表明在溶液和薄膜中共轭聚合物PPE4+与纳晶CdTe间均能发生有效的能量转移,而共轭聚合物PPE4+在能量传递过程中起到分子天线的作用。  相似文献   

2.
Development of Raman‐active materials with enhanced and distinctive Raman vibrations in the Raman‐silent region (1800–2800 cm−1) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water‐soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne‐state‐dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman‐silent region compared to alkyne‐containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π‐conjugated structure. PPE‐based conjugated polymer nanoparticles (CPNs) were also prepared as Raman‐responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging.  相似文献   

3.
A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor, 5‐CT . While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the 5‐CT triplet (with rates of 5.91±0.60 ns−1 and 1.03±0.09 ns−1 respectively), ultrafast hole transfer occurs only from PbS QDs to 5‐CT . Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the 5‐CT triplet and thus enhances TET from 5‐CT to the rubrene emitter, further bolstering the upconverison QY.  相似文献   

4.
A cationic water‐soluble conjugated polyelectrolyte, poly[9,9‐bis(6′′‐(N,N,N‐trimethylammonium)hexyl)fluorene‐co‐alt‐2,5‐bis(6′‐(N,N,N‐trimethylammonium)hexyloxyphenylene) tetrabromide], was synthesized. Fluorescence resonant energy transfer (FRET) experiments between the polymer and fluorescein‐labeled single‐stranded DNA (ssDNA‐Fl) were conducted in aqueous buffer and THF/buffer mixtures. Weak fluorescence emission in aqueous buffer was observed upon excitation of the polymer, whereas addition of THF turned on the fluorescence. Fluorescence self‐quenching of ssDNA‐Fl in the ssDNA‐Fl/polymer complexes as well as electron transfer from the polymer to fluorescein may account for the low fluorescence emission in buffer. The improved sensitization of fluorescence by the polymer observed in THF/buffer could be attributed to the weaker binding between the polymer and ssDNA‐Fl and a decrease in dielectric constant of the solvent mixture, which disfavors electron transfer. THF‐assisted signal sensitization was also observed for the polymer and fluorescein‐labeled double‐stranded DNA (dsDNA‐Fl). These results indicate that the use of cosolvent provides a strategy to improve the detection sensitivity for biosensors based on the optical amplification provided by conjugated polymers.  相似文献   

5.
Advanced tools for cell imaging are of great interest for the detection, localization, and quantification of molecular biomarkers of cancer or infection. We describe a novel photopolymerization method to coat quantum dots (QDs) with polymer shells, in particular, molecularly imprinted polymers (MIPs), by using the visible light emitted from QDs excited by UV light. Fluorescent core–shell particles specifically recognizing glucuronic acid (GlcA) or N‐acetylneuraminic acid (NANA) were prepared. Simultaneous multiplexed labeling of human keratinocytes with green QDs conjugated with MIP‐GlcA and red QDs conjugated with MIP‐NANA was demonstrated by fluorescence imaging. The specificity of binding was verified with a non‐imprinted control polymer and by enzymatic cleavage of the terminal GlcA and NANA moieties. The coating strategy is potentially a generic method for the functionalization of QDs to address a much wider range of biocompatibility and biorecognition issues.  相似文献   

6.
Water‐soluble cationic alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy) complexes have been demonstrated to undergo supramolecular assembly with anionic polyelectrolytes in aqueous buffer solution. Metal–metal‐to‐ligand charge transfer (MMLCT) absorptions and triplet MMLCT (3MMLCT) emissions have been found in UV/Vis absorption and emission spectra of the electrostatic assembly of the complexes with non‐conjugated polyelectrolytes, driven by Pt???Pt and π–π interactions among the complex molecules. Interestingly, the two‐component ensemble formed by [Pt(bzimpy‐Et){C?CC6H4(CH2NMe3‐4)}]Cl2 ( 1 ) with para‐linked conjugated polyelectrolyte (CPE), PPE‐SO3?, shows significantly different photophysical properties from that of the ensemble formed by 1 with meta‐linked CPE, mPPE‐Ala. The helical conformation of mPPE‐Ala allows the formation of strong mPPE‐Ala– 1 aggregates with Pt???Pt, electrostatic, and π–π interactions, as revealed by the large Stern–Volmer constant at low concentrations of 1 . Together with the reasonably large Förster radius, large HOMO–LUMO gap and high triplet state energy of mPPE‐Ala to minimize both photo‐induced charge transfer (PCT) and Dexter triplet energy back‐transfer (TEBT) quenching of the emission of 1 , efficient Förster resonance energy transfer (FRET) from mPPE‐Ala to aggregated 1 molecules and strong 3MMLCT emission have been found, while the less strong PPE‐SO3?– 1 aggregates and probably more efficient PCT and Dexter TEBT quenching would account for the lack of 3MMLCT emission in the PPE‐SO3?– 1 ensemble.  相似文献   

7.
A chemical sensor for metal ions was fabricated based on a water‐soluble conjugated polymer–graphene oxide (GO) composite. Water‐soluble poly(p‐phenylene ethynylene) (PPE) with sulfonic acid side chain groups was used to prepare a very stable water‐soluble PPE–GO composite with strong π–π interactions in water. The relationship between the optical properties and metal ion sensing capability of the PPE–GO composite in aqueous solution was investigated. Addition of metal ions enhanced the fluorescence intensity of the composite, and, in particular, the composite enabled the fluorescence detection of Cu2+ in aqueous solutions with high selectivity and sensitivity. Therefore, this conjugated polymer–GO composite sensor system was found to be an effective turn‐on type chemical sensor for metal ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We report a macromolecular end‐capping approach to improve the detection sensitivity of cationic conjugated polymer (CCP) based DNA detection. A phenylethynyl anthracene (PEA) end‐capped cationic polyfluorene (PF) derivative ( P1 ) is synthesized via Suzuki coupling. Due to efficient fluorescence resonance energy transfer (FRET) from the polymer backbone to the end‐capper PEA units, the polymer ( P1 ) fluorescence is dominated by the emission from PEA even in dilute aqueous solution. P1 emission has a better spectral overlap with fluorescein (Fl) absorption compared to that for uncapped PF ( P2 ). In addition, the intra and intermolecular energy transfer for P1 is more efficient in the presence of DNA due to complexation‐induced polymer aggregation. These impart a combinatorial FRET between P1 and an Fl‐labeled probe which is more efficient than that between P2 and the same probe. P1 thus offers a better DNA detection sensitivity relative to P2 and opens up new opportunities to improve the performance of CCP based biosensors involving FRET.

  相似文献   


9.
Abstract

The behavior of benzyl bromide functionalized poly(phenyleneethynylene)s as macroinitiators in the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was investigated. The 1H NMR observation of the ATRP using the exclusively para‐linked poly(phenyleneethynylene) macroinitiator PPE1A, and the low molecular weight initiator R‐BzBr, respectively, revealed lower reactivity for the macroinitiator. Comparison of graft copolymers, which were obtained from ATRP of MMA with PPE1A and the partially meta‐linked poly(phenyleneethynylene) PPE1B, showed higher reactivity in the case of PPE1B, expressed by a larger degree of polymerization in the PMMA side chains, as well as higher initiatior efficiency. This might be caused by better solubility of the less symmetric PPE1B. Investigation of the graft copolymers PPE2A and PPE2B was carried out by means of 1H NMR spectroscopy, gel permeation chromatography (GPC) as well as UV/vis spectroscopy. Impairment of the delocalized π‐electron system of the conjugated polymers during the ATRP was not detectable.  相似文献   

10.
A neutral polyfluorene derivative that contains 20 mol % 2,1,3‐benzothiadiazole (BT) is synthesized by Suzuki cross‐coupling polymerization. A cationic conjugated polymer A and an α‐mannose‐bearing polymer B are subsequently obtained through different post‐polymerization methods. As a result of the charged pendant groups or sugar‐bearing groups attached to the polymer side chains, both A and B show good water‐solubility. The titration of Concanavalin A (Con A) into polymer aqueous solution leads to different fluorescent responses for polymers A and B . Polymer A does not show any obvious fluorescence change upon interaction with Con A, whereas polymer B shows fluorescence increase in BT emission intensity when Con A is added. This is because of the specific interaction between α‐mannose and Con A, which induces polymer aggregation, and then facilitates energy transfer from the phenylene–fluorene segments to the BT units. A practical calibration curve ranging from 1 nM to 250 nM is obtained by correlating the changes in BT emission intensity with Con A concentration. The advantage of polymer B ‐based Con A macromolecular probe is that it shows signal increase upon Con A recognition, which is significantly different from other conjugated polymer‐based fluorescence quenching assays.  相似文献   

11.
A facile and reversible phase‐transfer protocol for luminescent ZnO quantum dots (QDs) between methanol and hexane is presented. Oleylamine together with acetic acid trigger this reversible phase‐transfer process, during which the structure and optical properties of the ZnO QDs are well‐protected. ZnO QDs with a diameter of approximately 5 nm emit yellow light at 525 nm, while those with a diameter of approximately 4 nm emit green light at 510 nm. The positions of the emission peaks remain unchanged during the presented phase‐transfer process. The Pearson’s hard and soft (Lewis) acid and base principle, together with the principle that similar substances are more likely to be dissolved by each other, describes the current reversible phase‐transfer process. Herein, we circumvent the time‐consuming work required to synthesize ZnO QDs in different environments, making it possible to combine the advantages of ZnO QDs dispersed in polar and nonpolar solvents.  相似文献   

12.
The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations on energy transfer. The incorporation of rigid, three‐dimensional scaffolds, such as iptycenes and cyclophanes, can encourage an oblique packing of the chromophore units of a conjugated polymer, thus allowing the formation of electronically‐coupled aggregates that retain high quantum yields of emission. Rigid iptycene scaffolds also act as excellent structural directors that encourage complete solvation of PPEs in a liquid crystal (LC) solvent. LC‐PPE mixtures display both an enhanced conformational alignment of polymer chains and extended effective conjugation lengths relative to isotropic solutions, which leads to enhanced energy transfer. Facile exciton migration in poly(p‐phenylene ethynylene)s (PPEs) allows energy absorbed over large areas to be funneled into traps created by the binding of analytes, resulting in signal amplification in sensory devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
We have synthesized a conjugated amphiphilic polyelectrolyte, a poly(phenylene ethynylene) (PPE), and the structurally analogous neutral polymer. The solution-phase aggregation of the uncharged PPE can be reversibly controlled by varying the solvent polarity and concentration, while the charged polymer appears to self-assemble at any concentration in compatible solvents. These conclusions are based on a combination of absorption and photoluminescence spectroscopy and dynamic light scattering. Photoinduced absorption spectroscopy was also employed to investigate interchain electronic communication and the photoinduced production of free charge carriers. The uncharged PPE had a relatively high polaron yield, indicating pi-stacking of adjacent PPE chains and efficient exciton splitting, while the charged polymer did not produce polarons, indicating that the polymers are not pi-stacked despite their tendency to form aggregates. This is most likely due to the presence of the cationic trimethylammonium side chains which force neighboring polymer chains too far apart to achieve effective pi-orbital overlap. Polarons were observed in both polymers after chemical doping with iodine. The ability to control aggregation and interchain electronic communication could be a useful tool in designing nanostructured electronic materials.  相似文献   

14.
Charge migration along DNA molecules is a key factor for DNA‐based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA‐based materials for the intactness of the DNA structure and their dynamic role in the charge‐transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA–cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well‐known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as‐prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature‐dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2‐ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge‐transfer dynamics.  相似文献   

15.
A π‐conjugated polymer containing a dithiafulvene unit and a bipyridyl unit was prepared by cycloaddition polymerization of aldothioketene derived from 5,5′‐diethynyl‐2,2′‐bipyridine. Ultraviolet–visible (UV–vis) absorption spectra showed that the π‐conjugation system of the polymer expanded more effectively than that of a benzene analogue of poly(dithiafulvene) obtained from 1,4‐diethynylbenzene. Cyclic voltammetry measurements indicated that the dithiafulvene–bipyridyl polymer was a weaker electron‐donor polymer than the benzene analogue. These results supported the idea that the incorporation of the electron‐accepting bipyridyl moiety into conjugated poly(dithiafulvene) induced an intramolecular charge‐transfer (CT) effect between the units. Treatment of the dithiafulvene–bipyridyl polymer with bis(2,2′‐bipyridyl)dichlororuthenium (II) [Ru(bpy)2Cl2] afforded a ruthenium–polymer complex. A cyclic voltammogram of the complex showed broad redox peaks, which indicated electronic interaction between the dithiafulvene and tris(bipyridyl) ruthenium complex. The dithiafulvene–bipyridyl polymer formed CT complexes with 7,7,8,8‐tetracycanoquinodimethane (TCNQ) in dimethyl sulfoxide. The UV–vis absorption indicated that the resulting CT complex contained anion radical of TCNQ and partially charge‐transferred TCNQ. The polymer showed an unusually high electrical conductivity of 3.1 × 10?4 S/cm in its nondoped state due to the effective donor–acceptor interaction between the bipyridine unit and the dithiafulvene unit. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4083–4090, 2001  相似文献   

16.
High charge carrier mobility in conjugated organometallic polymer networks   总被引:1,自引:0,他引:1  
The improvement of charge transport in conjugated polymers is a focal point of current research. It is shown here that the carrier mobility can be substantially increased through the introduction of conjugated cross-links between the conjugated chains. Novel organometallic polymer networks based on a poly(p-phenylene ethynylene) (PPE) derivative and Pt0 were synthesized by ligand-exchange reactions between the linear PPE and a low-molecular Pt complex. Time-of-flight measurements revealed ambipolar charge carrier mobilities of up to 1.6 x 10-2 cm2 V-1 s-1 for these materials, which are an order of magnitude higher than those of the neat polymer and represent the highest mobilities yet observed in disordered conjugated polymers.  相似文献   

17.
Considering the importance of conjugated polymer nanoparticles, major emphasis has been given for designing and understanding the energy transfer and charge transfer processes of organic‐inorganic hybrids for light harvesting applications. In the present study, we have designed an aqueous solution‐based light harvesting system using conjugated polymer nanoparticles (poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene], MEH‐PPV) and Au nanoparticles. The change in photo‐induced processes in the presence of metal nanoparticles are studied by steady‐state absorption, time‐resolved emission, time‐resolved fluorescence up‐conversion, ultrafast anisotropy and femtosecond transient absorption spectroscopy. Global and target analysis of transient absorption data validate the creation of a collective delocalized state in polymer nanoparticles, and the time scale for excitation energy funnelling from S1 state to low lying collective delocalized state (CLs) is 18 ps. Then, the electron transfer from the CLs state to Au NP occurs with a time constant of 150 ps. The 815 ps long lived charge transfer (CT) state signifies the charge transfer from the CLs state of polymer nanoparticles to Au NP. Such basic understanding of relaxation processes in hybrid systems is very important for designing inorganic‐organic hybrid light‐harvesting systems.  相似文献   

18.
This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) and the way these phenomena change with size, shape, and composition of the QDs. The understanding of the excited‐state dynamics of photoexcited QDs is essential for technological applications such as efficient solar energy conversion, light‐emitting diodes, and photovoltaic cells. Here, our emphasis is directed at describing the influence of size, shape, and composition of the QDs on their different relaxation processes, that is, radiative relaxation rate, nonradiative relaxation rate, and number of trap states. A stochastic model of carrier relaxation dynamics in semiconductor QDs was proposed to correlate with the experimental results. Many recent studies reveal that the energy transfer between the QDs and a dye is a FRET process, as established from 1/d6 distance dependence. QD‐based energy‐transfer processes have been used in applications such as luminescence tagging, imaging, sensors, and light harvesting. Thus, the understanding of the interaction between the excited state of the QD and the dye molecule and quantitative estimation of the number of dye molecules attached to the surface of the QD by using a kinetic model is important. Here, we highlight the influence of size, shape, and composition of QDs on the kinetics of energy transfer. Interesting findings reveal that QD‐based energy‐transfer processes offer exciting opportunities for future applications. Finally, a tentative outlook on future developments in this research field is given.  相似文献   

19.
A novel fluorescent (p‐phenylene ethynylene)‐calix[4]arene‐based polymer ( CALIX‐PPE ) has been successfully synthesized by cross‐coupling polymerization of bis‐calix[4]arene 1 with 1,4‐diethynylbenzene. The polycondensation was carried out in toluene/NEt3 at 35 °C for 24 h, using PdCl2(PPh3)2/CuI as the catalytic system, furnishing CALIX‐PPE in excellent isolated yields (higher than 95%, several runs). The yellow polymer is freely soluble in several nonprotic organic solvents. The GPC trace of the isolated polymer showed a monomodal distribution and a number‐average molecular weight of 23,300 g mol?1 (Mw/Mn = 2.05). No evidence was found in the structural analysis (FTIR and 1H/13C NMR) regarding the formation of alkyne homocoupled segments along the polymer chain. For comparative purposes, the synthesis of an analogous poly(p‐phenylene ethynylene) containing pt‐butyl‐phenoxymethyl side chains ( TBP‐PPE ) was also undertaken. A great similarity was found between the photophysical properties of CALIX‐PPE and TBP‐PPE in solution (UV–vis and laser induced luminescence), clearly demonstrating their unique dependence on the structure and conformation of the conjugated PPE backbone. The fluorescence spectra of polymers are of nearly identical shape, displaying their maximum emission around 420 nm. The calculated solution photoluminescence quantum yields of CALIX‐PPE and TBP‐PPE are of similar magnitude (?F( CALIX‐PPE ) = 0.43; ?F( TBP‐PPE ) = 0.51). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6477–6488, 2008  相似文献   

20.
We design well‐defined metal‐semiconductor nanostructures using thiol‐functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein‐conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au‐CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au‐CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×106 to 3.92×1010 s?1 is obtained for Au NR‐conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance‐dependent energy transfer. Such metal‐semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号