首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nature of the interactions of cyanide with lithium and hydrogen halides was investigated using ab initio calculations and topological analysis of electron density. The computed properties of the lithium‐bonded complexes RCN···LiX (R = H, F, Cl, Br, C?CH, CH?CH2, CH3, C2H5; X = Cl, Br) were compared with those of corresponding hydrogen‐bonded complexes RCN···HX. The results show that both types of intermolecular interactions are “closed‐shell” noncovalent interactions. The effect of substitution on the interaction energy and electron density at the bond critical points of the lithium and hydrogen bonding interactions is similar. In comparison, the interaction energies of lithium‐bonded complexes are more negative than those of hydrogen‐bonded counterparts. The electrostatic interaction plays a more important role in the lithium bond than in the hydrogen bond. On complex formation, the net charge and energy of the Li atom decrease and the atomic volume increases, while the net charge and energy of the H atom increase and the atomic volume decreases. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The F3YLi…NCH…HMH and F3YLi…HMH…HCN triads (Y=C, Si; M=Be, and Mg) are connected by lithium and dihydrogen bonds. To understand the properties of the systems better, the corresponding dyads are also studied. Molecular geometries, binding energies, infrared spectra and NMR properties of monomers, dyads, and triads are investigated at the MP2/6‐311++G** computational level. Particular attention is paid to parameters, such as cooperative energies, and many‐body interaction energies. Triads with the HMH molecule located at the end of the chain, show energetic cooperativity ranging between ?3.66 to ?7.59 kJ mol‐1. When the HMH molecule is located in the middle, the obtained cluster is diminutive with an energetic effect between 3.49 to 5.17 kJ mol‐1. The electronic properties of the complexes are analyzed using parameters derived from the atoms in molecules (AIM) methodology.  相似文献   

3.
The cooperative effects of hydrogen bonding in small water clusters (H2O)n (n=3–6) have been studied by using the partition of the electronic energy in accordance with the interacting quantum atoms (IQA) approach. The IQA energy splitting is complemented by a topological analysis of the electron density (ρ( r )) compliant with the quantum theory of atoms‐in‐molecules (QTAIM) and the calculation of electrostatic interactions by using one‐ and two‐electron integrals, thereby avoiding convergence issues inherent to a multipolar expansion. The results show that the cooperative effects of hydrogen bonding in small water clusters arise from a compromise between: 1) the deformation energy (i.e., the energy necessary to modify the electron density and the configuration of the nuclei of the isolated water molecules to those within the water clusters), and 2) the interaction energy (Eint) of these contorted molecules in (H2O)n. Whereas the magnitude of both deformation and interaction energies is enhanced as water molecules are added to the system, the augmentation of the latter becomes dominant when the size of the cluster is increased. In addition, the electrostatic, classic, and exchange components of Eint for a pair of water molecules in the cluster (H2O)n?1 become more attractive when a new H2O unit is incorporated to generate the system (H2O)n with the last‐mentioned contribution being consistently the most important part of Eint throughout the hydrogen bonds under consideration. This is opposed to the traditional view, which regards hydrogen bonding in water as an electrostatically driven interaction. Overall, the trends of the delocalization indices, δ(Ω,Ω′), the QTAIM atomic charges, the topology of ρ( r ), and the IQA results altogether show how polarization, charge transfer, electrostatics, and covalency contribute to the cooperative effects of hydrogen bonding in small water clusters. It is our hope that the analysis presented in this paper could offer insight into the different intra‐ and intermolecular interactions present in hydrogen‐bonded systems.  相似文献   

4.
Quantum chemical calculations at the second‐order Moeller–Plesset (MP2) level with 6‐311++G(d,p) basis set have been performed on the lithium‐bonded and hydrogen‐bonded systems. The interaction energy, binding distance, bond length, and stretch frequency in these systems have been analyzed to study the nonadditivity of methyl group in the lithium bonding and hydrogen bonding. In the complexes involving with NH3, the introduction of one methyl group into NH3 molecule results in an increase of the strength of lithium bonding and hydrogen bonding. The insertion of two methyl groups into NH3 molecule also leads to an increase of the hydrogen bonding strength but a decrease of the lithium bonding strength relative to that of the first methyl group. The addition of three methyl groups into NH3 molecule causes the strongest hydrogen bonding and the weakest lithium bonding. Although the presence of methyl group has a different influence on the lithium bonding and hydrogen bonding, a negative nonadditivity of methyl group is found in both interactions. The effect of methyl group on the lithium bonding and hydrogen bonding has also been investigated with the natural bond orbital and atoms in molecule analyses. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

5.
The nature of the S? H???S hydrogen‐bonding interaction in the H2S dimer and its structure has been the focus of several theoretical studies. This is partly due to its structural similarity and close relationship with the well‐studied water dimer and partly because it represents the simplest prototypical example of hydrogen bonding involving a sulfur atom. Although there is some IR data on the H2S dimer and higher homomers from cold matrix experiments, there are no IR spectroscopic reports on S? H???S hydrogen bonding in the gas phase to‐date. We present experimental evidence using VUV ionization‐detected IR‐predissociation spectroscopy (VUV‐ID‐IRPDS) for this weak hydrogen‐bonding interaction in the H2S dimer. The proton‐donating S? H bond is found to be red‐shifted by 31 cm?1. We were also able to observe and assign the symmetric (ν1) stretch of the acceptor and an unresolved feature owing to the free S? H of the donor and the antisymmetric (ν3) SH stretch of the acceptor. In addition we show that the heteromolecular H2S–MeOH complex, for which both S? H???O and O? H???S interactions are possible, is S‐H???O bound.  相似文献   

6.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

7.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

8.
An analytic potential energy function is proposed and applied to evaluate the amide–amide and amide–water hydrogen‐bonding interaction energies in peptides. The parameters in the analytic function are derived from fitting to the potential energy curves of 10 hydrogen‐bonded training dimers. The analytic potential energy function is then employed to calculate the N? H…O?C, C? H…O?C, N? H…OH2, and C?O…HOH hydrogen‐bonding interaction energies in amide–amide and amide–water dimers containing N‐methylacetamide, acetamide, glycine dipeptide, alanine dipeptide, N‐methylformamide, N‐methylpropanamide, N‐ethylacetamide and/or water molecules. The potential energy curves of these systems are therefore obtained, including the equilibrium hydrogen bond distances R(O…H) and the hydrogen‐bonding energies. The function is also applied to calculate the binding energies in models of β‐sheets. The calculation results show that the potential energy curves obtained from the analytic function are in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction, which demonstrate that the analytic function proposed in this work can be used to predict the hydrogen‐bonding interaction energies in peptides quickly and accurately. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
A method is proposed to rapidly predict the hydrogen bond cooperativity in N‐methylacetamide chains. The parameters needed are obtained from the fittings to the hydrogen bonding energies in the formamide chains containing 2 to 8 monomeric units. The scheme is then used to calculate the individual hydrogen bonding energies in N‐methylacetamide chains containing 2 to 7 monomeric units. The cooperativity predicted is in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction. Our scheme is further employed to predict the individual hydrogen bonding energies in larger N‐methylacetamide chains containing up to 200 monomeric N‐methylacetamide units, to which the MP2 method cannot be applied. Based on our scheme, a cooperative effect of over 170 % of the dimer hydrogen bonding energy in long N‐methylacetamide chains is predicted. The method is also applied to heterogeneous chains containing formamide, acetamide, N‐methylformamide, and N‐methylacetamide. The individual hydrogen bonding energies in these heterogeneous chains are also in good agreement with those obtained from MP2 calculations with the BSSE correction, further demonstrating that our method is reasonable.  相似文献   

10.
The model complex [Cu44‐S)(dppa)4]2+ ( 1 , dppa=μ2‐(Ph2P)2NH) has N2O reductase activity in methanol solvent, mediating 2 H+/2 e? reduction of N2O to N2+H2O in the presence of an exogenous electron donor (CoCp2). A stoichiometric product with two deprotonated dppa ligands was characterized, indicating a key role of second‐sphere N?H residues as proton donors during N2O reduction. The activity of 1 towards N2O was suppressed in solvents that are unable to provide hydrogen bonding to the second‐sphere N?H groups. Structural and computational data indicate that second‐sphere hydrogen bonding induces structural distortion of the [Cu4S] active site, accessing a strained geometry with enhanced reactivity due to localization of electron density along a dicopper edge site. The behavior of 1 mimics aspects of the CuZ catalytic site of nitrous oxide reductase: activity in the 4CuI:1S redox state, use of a second‐sphere proton donor, and reactivity dependence on both primary and secondary sphere effects.  相似文献   

11.
Borinic acids have typically not been considered as hydrogen bond donor groups in molecular recognition. Described herein is a bifunctional borane/borinic acid derivative ( 2 ) in which the two functionalities are connected by a 1,8‐biphenylenediyl backbone. Anion binding studies reveal that 2 readily binds a fluoride anion by formation of a unique B?F???H?O?B hydrogen bond. This hydrogen bond is characterized by a short H‐F distance of 1.79(3) Å and a large coupling constant (1JHF) of 57.2 Hz. The magnitude of this interaction, which has also been investigated computationally, augments the fluoride anion binding properties of 2 , thus making it compatible with aqueous environments.  相似文献   

12.
The intramolecular hydrogen‐bonding interactions and properties of a series of nitroamino[1,3,5]triazine‐based guanidinium salts were studied by using the dispersion‐corrected density functional theory method (DFT‐D). Results show that there are evident LP(N or O; LP=lone pair)→σ*(N? H) orbital interactions related to O???H? N or N???H? N hydrogen bonds. Quantum theory of atoms in molecules (QTAIM) was applied to characterize the intramolecular hydrogen bonds. For the guanidinium salts studied, the intramolecular hydrogen bonds are associated with a seven‐ or eight‐membered pseudo‐ring. The guanylurea cation is more helpful for improving the thermal stabilities of the ionic salts than other guanidinium cations. The contributions of different substituents on the triazine ring to the thermal stability increase in the order of ? NO223 (? ONO2)2. Energy decomposition analysis shows that the salts are stable owing to electrostatic and orbital interactions between the ions, whereas the dispersion energy has very small contributions. Moreover, the salts exhibit relatively high densities in the range of 1.62–1.89 g cm?3. The detonation velocities and pressures lie in the range of 6.49–8.85 km s?1 and 17.79–35.59 GPa, respectively, which makes most of them promising explosives.  相似文献   

13.
Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of ClF molecule in water are performed with the Lennard-Jones plus Coulomb electrostatic potential parameters that are optimized with ab initio interaction energy calculations for the pre-reactive H2O…ClF complex. We find that the halogen bonding interactions occur between O and Cl atoms and have the comparable strength and population with respect to the hydrogen bonding interactions of Cl…H.  相似文献   

14.
Ultrathin two‐dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (<2.0 nm) through a solvothermal reaction mediated by the hydrogen‐bonding networks constructed by hydroquinone (HQ). The resultant TiO2 NFs have nearly 100 % exposed (001) facets and give an extremely high SA up to 487 m2 g?1. The synergistic effect of HQ and choline chloride plays a vital role in the formation of TiO2 NFs and in the exposure of HE (001) facets. Because of its ultrathin feature and exposed (001) facet, the N2‐annealled TiO2 NFs showed fast kinetics of lithium insertion/extraction, demonstrating foreseeable applications in the energy storage.  相似文献   

15.
The crystal structures of phenylpropylpyridine‐N‐oxide and N‐methyl‐phenylpropylpyridinium iodide are compared, revealing that hydrogen bonding with the solvent molecule plays an important role in the N‐oxide compound, whilst electrostatic interactions are predominant in controlling the solid‐state orientation of the N‐methylated compound. Fluorescence spectroscopy and NOESY indicate that in contrast to the previously reported pyridinium iodide, the N‐oxide is not subject to intramolecular π‐stacking, as judged by excimer emission and a lack of corresponding cross peaks, respectively.  相似文献   

16.
A series of urea‐derived heterocycles, 5N‐substituted hexahydro‐1,3,5‐triazin‐2‐ones, has been prepared and their structures have been determined for the first time. This family of compounds only differ in their substituent at the 5‐position (which is derived from the corresponding primary amine), that is, methyl ( 1 ), ethyl ( 2 ), isopropyl ( 3 ), tert‐butyl ( 4 ), benzyl ( 5 ), N,N‐(diethyl)ethylamine ( 6 ), and 2‐hydroxyethyl ( 7 ). The common heterocyclic core of these molecules is a cyclic urea, which has the potential to form a hydrogen‐bonding tape motif that consists of self‐associative (8) dimers. The results from X‐ray crystallography and, where possible, Laue neutron crystallography show that the hydrogen‐bonding motifs that are observed and the planarity of the hydrogen bonds appear to depend on the steric hindrance at the α‐carbon atom of the N substituent. With the less‐hindered substituents, methyl and ethyl, the anticipated tape motif is observed. When additional methyl groups are added onto the α‐carbon atom, as in the isopropyl and tert‐butyl derivatives, a different 2D hydrogen‐bonding motif is observed. Despite the bulkiness of the substituents, the benzyl and N,N‐(diethyl)ethylamine derivatives have methylene units at the α‐carbon atom and, therefore, display the tape motif. The introduction of a competing hydrogen‐bond donor/acceptor in the 2‐hydroxyethyl derivative disrupts the tape motif, with a hydroxy group interrupting the N? H???O?C interactions. The geometry around the hydrogen‐bearing nitrogen atoms, whether planar or non‐planar, has been confirmed for compounds 2 and 5 by using Laue neutron diffraction and rationalized by using computational methods, thus demonstrating that distortion of O‐C‐N‐H torsion angles occurs to maintain almost‐linear hydrogen‐bonding interactions.  相似文献   

17.
The new diiodine basicity scale pKBI2 is quasi‐orthogonal to most known Lewis basicity scales (hydrogen‐bond, dative‐bond and cation basicity scales). The diiodine basicity falls in the sequence N>P≈Se>S>I≈O>Br>Cl>F for the iodine‐bond acceptor atomic site and SbO≈NO≈AsO>SeO>PO>SO>C?O>? O? >SO2 or PS?? S? >C?S?N?C?S for the functionality of oxygen or sulfur bases. Substituent effects are quantified through linear free energy relationships, which allow the calculation of individual complexation constants for each site of polybases and thus the classification of aromatic ethers as carbon π bases and of aromatic amines, thioethers and selenoethers as N, S and Se bases, respectively. The pKBI2 values of nBu3N+‐N?C≡N, 2‐aminopyridine and 1,10‐phenanthroline reveal a superbasic nitrile, a hydrogen‐bond‐assisted iodine bond and a two‐centre iodine bond, respectively. The diiodine basicity scale is a general inorganic but family‐dependent organic halogen‐bond basicity scale because organic halogen‐bond donors such as IC≡N and ICF3 have a stronger electrostatic character than I2. The family independence can be restored by the addition of an electrostatic parameter, either the experimental pKBHX hydrogen‐bond basicity scale or the computed minimum electrostatic potential.  相似文献   

18.
The block‐localized wave function (BLW) method can derive the energetic, geometrical, and spectral changes with the deactivation of electron delocalization, and thus provide a unique way to elucidate the origin of improper, blueshifting hydrogen bonds versus proper, redshifting hydrogen bonds. A detailed analysis of the interactions of F3CH with NH3 and OH2 shows that blueshifting is a long‐range phenomenon. Since among the various energy components contributing to hydrogen bonds, only the electrostatic interaction has long‐range characteristics, we conclude that the contraction and blueshifting of a hydrogen bond is largely caused by electrostatic interactions. On the other hand, lengthening and redshifting is primarily due to the short‐range n(Y)→σ*(X?H) hyperconjugation. The competition between these two opposing factors determines the final frequency change direction, for example, redshifting in F3CH ??? NH3 and blueshifting in F3CH ??? OH2. This mechanism works well in the series FnCl3?nCH ??? Y (n=0–3, Y=NH3, OH2, SH2) and other systems. One exception is the complex of water and benzene. We observe the lengthening and redshifting of the O?H bond of water even with the electron transfer between benzene and water completely quenched. A distance‐dependent analysis for this system reveals that the long‐range electrostatic interaction is again responsible for the initial lengthening and redshifting.  相似文献   

19.
Hybrid supramolecular capsules self‐assemble by simultaneously forming hydrogen and metal–ligand coordination bonds on mixing a C2‐symmetrical cavitand (calix[4]resorcinarene‐based cavitands with ureide and terminal 4‐pyridyl units) with platinum or palladium complexes ([Pt(OTf)2] or [Pd(OTf)2] with chelating bisphosphines) in 1:1 ratio. Hemicapsular assemblies formed in the presence of excess amounts of cavitand relative to the platinum or palladium complexes are identified as intermediates in the above self‐assembly process by 2D‐NOESY spectroscopy. External‐anion‐assisted encapsulation of a neutral guest, 4,4′‐diiodobiphenyl, inside the hybrid supramolecular capsules accompanied conformational changes in the hydrogen‐bonding moieties. The in/out exchange ratio of the encapsulated guest depends on the bite angle of the bisphosphine ligand. Addition of DMSO accelerates guest exchange by weakening the hydrogen bonds in the encapsulation complex. Therefore, variations in the structure of the metal complex and amount of polar solvent exert dual control on the dynamics of the guest exchange.  相似文献   

20.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号