首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A [{hydrotris(3-phenyl-5-methyl-1-pyrazolyl)borate}(3-phenyl-5-methyl-pyrazole) nickel chloride] [TpPh,MeNi(Cl)PzPh,MeH] (I) has been synthesized and explored as ionophores for the preparation of a poly (vinyl chloride) (PVC) membrane sensor for azide and thiocyanate anions. The compounds [TpPh,MeNi(N3)PzPh,MeH] (II) and [TpPh,MeNi(SCN)PzPh,MeH] (III) were characterized by their crystal structures and proved to be bonded as monodentate through nitrogen atom of azide and thiocyanate anion. Potentiometric investigations also indicate high affinity of this receptor for thiocyanate and azide ions. PVC based membranes of I using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as SCN and N3 selective sensors. The best performance was shown by the membrane of thiocyanate with composition (w/w) of (I) (7%):PVC (31%):DBP (60%):HTAB (2%). This sensor works well over a wide concentration range 5.3 × 10−7 to 1.0 × 10−2 M with Nernstian compliance (59.2 mV decade−1 of activity) within pH range 2.5-9.0 with a response time of 11 s and showed good selectivity for thiocyanate ion over a number of anions. The sensor exhibits adequate life (3 months) and could be used successfully for the determination of thiocyanate content in human urine, saliva and river water samples. While the membrane of [TpPh,MeNi(Cl)PzPh,MeH] ionophore with composition (I) (6%):HTAB (4%):PVC (31%):TBP (59%) showed highest sensitivity and widest linear range for azide ion. These sensors exhibit the maximum working concentration range of 8.1 × 10−6 to 1.0 × 10−2 M with Nernstian slope of 59.3 mV decade−1 of activity. It can be applied for the monitoring of the azide ions concentration in aqueous black tea and orange juice samples.  相似文献   

2.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   

3.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

4.
Amr Lotfy Saber 《Electroanalysis》2013,25(12):2707-2714
The present article reports for the first time the use of Aliquat 336S‐atorvastatin as an electroactive material in a poly(vinyl chloride) matrix membrane sensor plasticized with ortho‐nitrophenyl‐octylether (o‐NPOE) or dioctylphthalate (DOP) for determination of atorvastatin in biological samples (human plasma) and in pharmaceutical preparations. The sensor shows fast, stable and reproducible response over the concentration range of 1.0×10?7–1.0×10?2 mol L?1 atorvastatin with anionic slopes of 60.94±0.2 and 58.22±0.2 and pH range of 5.0–9.0 for o‐NPOE and DOP plasticized based membrane sensors, respectively. The response time of the sensor is stable and fast (10 s). Results were achieved with average recoveries of 99.5 % and 99.3 % and mean standard deviations of ±1.1 % and ±1.4 % for o‐NPOE and DOP plasticized based membrane sensors, respectively. The sensor exhibits high selectivity towards atorvastatin in the presence of many anions, drug excipients and diluents. Validation of the method according to the quality assurance standards shows suitability of the proposed sensors for use in the quality control assessment of the drug.  相似文献   

5.
[TpPh,MeNi(Cl)PzPh,MeH] (1) has been synthesized by the reaction of hydrotris(3-phenyl-5-methyl-pyrazol-1-yl) borate [TpPh,Me], NiCl2 · 6H2O and 3-phenyl-5-methyl-pyrazole [PzPh,MeH]. The reaction of 1 with variously substituted sodium pX–benzoates resulted in the formation of complexes of the type [TpPh,MeNi(p–X–OBz)PzPh,MeH] (X = H for 2, F for 3, Cl for 4, NO2 for 5, Me for 6, OMe for 7, OH for 8, CHO for 9 and CN for 10). Single crystal X-ray studies suggest that all these complexes have a five-coordinate metal center and the benzoate groups are monodentate in a square pyramidal geometry. The X-ray studies also reveal that the uncoordinated oxygen atom of the benzoate forms intramolecular hydrogen-bonds with the NH group of the coordinated pyrazole. The substituents present on the benzoate ring are involved in different types of intermolecular interactions and the complexes exhibit different crystal packing. Complexes 210 were tested for superoxide dismutase activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

7.
The synthesis of a new compound, amide‐linked manganese diporphyrin xanthene (Mn2Cl2ADPX), and its application for preparation of thiocyanate selective electrodes was described. The electrode was prepared with a PVC membrane combining Mn2Cl2ADPX as an electro active material, 2‐nitrophenyl octyl ether (o‐NPOE) as a plasticizer in the percentage ratio of 3 : 65 : 32 (Mn2Cl2ADPX: o‐NPOE: PVC, w : w : w). The electrode exhibited linear response within the concentration range of 2.4×10?6 to 1.0×10?1 M SCN?, with a working pH range from 3.0 to 8.0 and a fast response time of less than 60 s. Several electroactive materials and solvent mediators have been compared and the experimental conditions were optimized. The Mn2Cl2ADPX based electrode shows obviously better response characteristics than that of monoporphyrin manganese in terms of working concentration range and slope. Selectivity coefficients for SCN? relative to a number of interfering ions were investigated. The electrode exhibits anti‐Hofmeister selectivity toward SCN? with respect to common coexisting anions. The electrode was applied to the determination of SCN? in body urine with satisfactory results.  相似文献   

8.
A new validated potentiometric method is described for batch and continuous quality control monitoring of the drug oseltamivir phosphate (Taminil) (OST). The method involves the development of a potentiometric sensor responsive to the drug based on the use of the ion‐association complex of (OST+) cation with phosphomolybdate anion (PMA?) as an electroactive material in a poly(vinyl chloride) matrix membrane plasticized with o‐nitrophenyloctyl ether (o‐NPOE). Optimization of the performance characteristics of the sensor is described. A membrane incorporating the OST‐PMA‐NPOE complex in a tubular flow through detector is used in a two channel flow injection set up for continuous monitoring of the drug at a frequency of ~30 samples h?1. The sensor shows fast near‐Nernstian response for OST over the concentration range 5.2×10?5–0.8×10?2 M (21.34 µg mL?1–3.23 mg mL?1) with a detection limit of 9.1×10?6 M (3.73 µg mL?1) over the pH range 4.6–6.1. The sensor displays good selectivity for OST drug over some basic drugs, inorganic cations, excipients and diluents commonly used in the drug formulations. Validation of the assay method is tested by measuring the lower detection limit, range, linearity, bias, trueness, accuracy, precision, and between‐day‐variability, within day reproducibility, selectivity and ruggedness (robustness). The results reveal good potentiometric performance of the proposed sensor for determination of OST in pharmaceutical capsules and in biological fluid matrices as well as for testing the dissolution profile of the drug and drug homogeneity.  相似文献   

9.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

10.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

11.
Tripodal cadmium complex of hydrotris(3‐phenyl‐5‐methylpyrazolyl)borate (I1) and macrocyclic ligand 5,7 : 12,14 : 19,21 : 26,28‐Bzo4‐[28]‐5,13,19,27‐tetraene‐8,11,22,25‐N4–1,4,15,18‐O4 (I2), have been synthesized and characterized by IR, 1H NMR, Mass and elemental analysis. Spectroscopic investigations indicate high affinity of these receptors for dihydrogen phosphate ion. Polyvinyl chloride (PVC) based membranes of (I1) and (I2) using hexadecyl trimethylammonium bromide (HTAB) as cation discriminator and dibutylpthalate (DBP), tributyl phosphate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE), as plasticizing solvent mediators were prepared and investigated as H2PO selective sensors. The best performance was shown by the membrane of composition (w/w) (I2) (5%):PVC (31%) : DBP (61.5%):HTAB (2.5%). This sensor works well over a wide concentration range 2.1×10?7 to 1.0×10?2 M with Nernstian compliance (59.0 mV decade?1 of activity) with a fast response time of 14 s and showed good selectivity for dihydrogen phosphate ion over a number of anions. The sensor exhibits good reproducibility (SD±0.3 mV) and could be used successfully for the determination of phosphate in soil water samples.  相似文献   

12.
A potentiometric azide-selective sensor based on the use of iron(III) hydrotris(3,5-dimethylpyrazolyl)borate acetylacetonate chloride [TpMe2Fe(acac)Cl] as a neutral carrier for an azide-selective electrode is reported. Effect of various plasticizers, viz. o-nitrophenyloctyl ether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), and benzylacetate (BA), and an anion excluder, hexadecyltrimethylammonium bromide (HTAB), with [TpMe2Fe(acac)Cl] complex in poly(vinyl chloride) (PVC) were studied. The best performance was obtained with a membrane composition of [TpMe2Fe(acac)Cl]/HTAB/DOP/PVC in a ratio of 5:2:190:100 (w/w). The sensor exhibits significantly enhanced selectivity toward azide ions over the concentration range 6.3 × 10−7 to 1.0 × 10−2 M with a lower detection limit of 3.8 × 10–7 M and a Nernstian slope of 59.4 ± 1.1 mV decade−1. Influences of the membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility, long-term stability and applicability over a wide pH range (3.5–9.0) are demonstrated. The sensor has a response time of 14 s and can be used for at least 45 days without any considerable divergence in the potential response. The proposed electrode shows fairly good discrimination of azide from several inorganic and organic anions. It was successfully applied to the direct determination of azide in orange juice, tea extracts and human urine samples.  相似文献   

13.
《Electroanalysis》2005,17(11):1003-1007
A novel PVC membrane ion‐selective electrode based on tribenzyltin(IV) dithiocarbamate [Sn(IV)–TBDTB] as neutral carrier was developed for thiocyanate (SCN?) determination. The electrode exhibits a near‐Nernstian response for SCN? with a slope of 62.8±2.0 mV per decade over a wide concentration range 1.0×10?1–2.0×10?6 mol L?1 and a detection limit of 1.0×10?6 mol L?1 in MES–NaOH buffer, pH 6.0, at 25 °C. The electrode prepared with 1.5 wt.% Sn(IV)–TBDTB, 32.5 wt.% PVC and 66.0 wt.% 2‐nitrophenyloctyl ether (o‐NPOE) shows optimal response characteristics. Anti‐Hofmeister selectivity sequence for a series of anions shown by the electrode was as follows: SCN?>Sal?>I?>ClO >phCOO?>CH3COO?>Br?>Cl?>NO >NO >Citrate>SO42?. The useful pH range for the electrode was found to be 3–7 with a response time 30–40 s. The electrode has been used for direct determination of thiocyanate in wastewater with satisfactory results.  相似文献   

14.
A series of complexes of the type [(TpR1,R2)M(X)] (Tp=trispyrazolylborato) with R1/R2 combinations Me/tBu, Ph/Me, iPr/iPr, Me/Me and for M=Mn or Fe coordinating [PzMe,tBu]? (Pz=pyrazolato) or Cl? as co‐ligand X has been synthesised. Although the chloride complexes were very unreactive and stable in air, the pyrazolato series was far more reactive in contact with oxidants like O2 and tBuOOH. The [(TpR1,R2)M(PzMe,tBu)] complexes proved to be active pre‐catalysts for the oxidation of cyclohexene with tBuOOH, reaching turnover frequencies (TOFs) ranging between moderate and good in comparison to other manganese catalysts. Cyclohexene‐3‐one and cyclohexene‐3‐ol were always found to represent the main products, with cyclohexene oxide occasionally formed as a side product. The ratios of the different oxidation products varied with the reaction conditions: in the case of a peroxide/alkene ratio of 4:1, considerably more ketone than alcohol was obtained and cyclohexene oxide formation was almost negligible, whereas a ratio of 1:10 led to a significant increase of the alcohol proportion and to the formation of at least small amounts of the epoxide. Pre‐treatment of the dissolved [(TpR1,R2)M(PzMe,tBu)] pre‐catalysts with O2 led to product distributions and TOFs that were very similar to those found in the absence of O2, so that it may be argued that tBuOOH and O2 both lead to the same active species. The results of EPR spectroscopy and ESI‐MS suggest that the initial product of the reaction of [(TpMe,Me)Mn(PzMe,tBu)] with O2 contains a MnIII(O)2MnIV core. Prolonged exposure to O2 leads to a different dinuclear complex containing three O‐bridges and resulting in different TOFs/product distributions. Analogous findings were made for other complexes and formation of these overoxidised products may explain the deviation of the catalytic performances if the reactions are carried out in an O2 atmosphere.  相似文献   

15.
Novel Zn2+ ion‐selective PVC based coated graphite electrodes were fabricated using the ionophores N‐((1H‐indol‐3‐yl)methylene)thiazol‐2‐amine (I1), N‐((1H‐indol‐3‐yl)methyl)‐thiazol‐2‐amine (I2) and 1‐((1H‐indol‐3‐yl)methylene)urea (I3). Their potentiometric performance was examined in dependence of the addition of plasticizers and anion excluders and compared. It is found that the coated graphite electrode with the composition I1:KTpClPB:o‐NPOE:PVC=9 : 1.5 : 51 : 38.5 is the best with respect to the wide working concentration range (4.2×10?8–1.0×10?1 mol L?1), low detection limit (1.6×10?8 mol L?1) and wide pH range of 3.0–8.0. The proposed electrode was successfully applied to quantify Zn2+ in various environmental, biological and medicinal plant samples and used as indicator electrode.  相似文献   

16.
A first step towards the microfabrication of a thin‐film array based on an organic/inorganic sensor hybrid has been realized. The inorganic microsensor part incorporates a sensor membrane based on a chalcogenide glass material (Cu‐Ag‐As‐Se) prepared by pulsed laser deposition technique (PLD) combined with an PVC organic membrane‐based organic microsensor part that includes an o‐xylyene bis(N,N‐diisobutyl‐dithiocarbamate) ionophore. Both types of materials have been electrochemically evaluated as sensing materials for copper(II) ions. The integrated hybrid sensor array based on these sensing materials provides a linear Nernstian response covering the range 1×10?6–1×10?1 mol L?1 of copper(II) ion concentration with a fast, reliable and reproducible response. The merit offered by the new type of thin‐film hybrid array includes the high selectivity feature of the organic membrane‐based thin‐film microsensor part in addition to the high stability of the inorganic thin‐film microsensor part. Moreover, the thin‐film sensor hybrid has been successfully applied in flow‐injection analysis (FIA) for the determination of copper(II) ions using a miniaturized home‐made flow‐through cell. Realization of the organic/inorganic thin‐film sensor hybrid array facilitates the development of a promising sophisticated electronic tongue for recognition and classification of various liquid media.  相似文献   

17.
Pankaj Kumar 《Electroanalysis》2012,24(10):2005-2012
A new ionophore, i.e. p‐(2‐thiazolazo)calix[4]arene ( I ) has been explored for its selective behavior towards Ni(II) ions. A poly(vinyl chloride) based membrane containing ( I ) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and nitrophenyloctyl ether in the ratio 10 : 100 : 3 : 150 (I:PVC:NaTPB:NPOE) (w/w) was used to fabricate an all solid state nickel(II)‐selective sensor. The developed sensor exhibited a working concentration range of 1.0×10?6–1.0×10?1 M, with a Nernstian slope of 28.9±1.0 mV/decade of activity and a response time of 10–15 s. This sensor shows a detection limit of 9.0×10?7 M. Its potential response remains unaffected of pH in the range 3.0–7.6, and the cell assembly could be used successfully in partially nonaqueous medium (up to 10 % v/v) without any significant change in the slope value or the working concentration range. The sensor worked satisfactorily for about ten weeks and exhibited excellent selectivity over a number of mono‐, bi‐, and tri‐valent cations including alkali, alkaline earth metal, and transition metal ions. It could be used as an indicator electrode for the end point determination in the potentiometric titration of nickel ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of nickel ion concentration in real samples.  相似文献   

18.
A series of unusual chemical‐bond transformations were observed in the reactions of high active yttrium? dialkyl complexes with unsaturated small molecules. The reaction of scorpionate‐anchored yttrium? dibenzyl complex [TpMe2Y(CH2Ph)2(thf)] ( 1 , TpMe2=tri(3,5‐dimethylpyrazolyl)borate) with phenyl isothiocyanate led to C?S bond cleavage to give a cubane‐type yttrium–sulfur cluster, {TpMe2Y(μ3‐S)}4 ( 2 ), accompanied by the elimination of PhN?C(CH2Ph)2. However, compound 1 reacted with phenyl isocyanate to afford a C(sp3)? H activation product, [TpMe2Y(thf){μ‐η13‐OC(CHPh)NPh}{μ‐η32‐OC(CHPh)NPh}YTpMe2] ( 3 ). Moreover, compound 1 reacted with phenylacetonitrile at room temperature to produce γ‐deprotonation product [(TpMe2)2Y]+[TpMe2Y(N=C?CHPh)3]? ( 6 ), in which the newly formed N?C?CHPh ligands bound to the metal through the terminal nitrogen atoms. When this reaction was carried out in toluene at 120 °C, it gave a tandem γ‐deprotonation/insertion/partial‐TpMe2‐degradation product, [(TpMe2Y)2(μ‐Pz)2{μ‐η13‐NC(CH2Ph)CHPh}] ( 7 , Pz=3,5‐dimethylpyrazolyl).  相似文献   

19.
The two podand chelates based on diethylsulfide, 1,5‐bis(2′‐hydroxy‐4′‐nitrophenoxy)‐3‐thiapentane (L1) and 1,5‐bis(8′‐oxybenzopyridine)‐3‐thia pentane (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinyl chloride) based membrane electrodes selective to Pb2+. The addition of anionic additives and various plasticizers has been found to substantially improve the performance of the electrode. The best performance was obtained with the electrode No. 1 having a membrane of ionophore (L1) with the composition PVC:o‐NPOE:ionophore (L1):NaTFPB (%w/w) of 33 : 62 : 3 : 2. The electrode exhibits Nernstian response with a slope of 31.57±0.3 mV decade?1 of activity in the concentration range from 2.0×10?9 to 1.0×10?1 M Pb2+, performs satisfactorily over a wide pH range (1.6–7.0), with a fast response time (5 s).  相似文献   

20.
Poly(vinyl chloride) polymeric membrane sensors containing Sn(IV) phthalocyanine dichloride (SnPC) and Co(II) phthalocyanine (CoPC) as novel electroactive materials dispersed in o‐nitrophenyl octylether (o‐NPOE) as a plasticizer are examined potentiometrically with respect to their response toward selenite (SeO32?) ions. Fast Nernstian response for SeO32? ions over the concentration ranges 7.0×10?6–1.0×10?3 and 8.0×10?6–1.0×10?3 mol L?l at pH 3.5–8.5 with lower detection limit of 5.0×10?6 and 8.0×10?6 mol L?1 and calibration slopes of ?25.4 and ?29.7 mV decade?1 are obtained with SnPC and CoPC based membrane sensors, respectively. The proposed sensors reveals by the modified separate solution method (MSSM) a good selectivity over different anions which differ significantly from the classical Hofmeister series. A segmented sandwich membrane method is used to determine complex formation constants of the ionophores in situe in the solvent polymeric sensing membranes. Membrane incorporating CoPC in a tubular flow detector is used in a two channels flow injection set up for continuous monitoring of selenite at a frequency of ca. 50 samples h?1. Direct determination of selenium in pharmaceutical formulations and anodic slime gives results in good agreement with data obtained using standard ICP method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号