共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li‐Ion Storage 下载免费PDF全文
Dr. Shan Hu Prof. Wen Chen Dr. Evan Uchaker Prof. Jing Zhou Prof. Guozhong Cao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(50):18248-18257
MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100–150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m2 g?1. The MoS2@C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2. The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g?1 and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g?1, as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2@C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2, and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass‐ and charge‐transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge‐transfer reaction and the diffusivity of the MoS2@C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li‐ion battery market. 相似文献
2.
Hierarchical LiV3O8 nanofibers, assembled from nanosheets that have exposed {100} facets, have been fabricated by using electrospinning combined with calcination. The formation mechanism of hierarchical nanofibers was investigated by X‐ray diffraction and scanning electron microscopy. Poly(vinyl alcohol) (PVA) played a dual role in the formation of the nanofibers: besides acting as the template for forming the fibers, it effectively prevented the aggregation of LiV3O8 nanoparticles, thereby allowing them to grow into small nanosheets with exposed {100} facets owing to the self‐limitation property of LiV3O8. This nanostructure is beneficial for the insertion/extraction of lithium ions. Meanwhile, the {100} facets have fewer and smaller channels, which may effectively alleviate proton co‐intercalation into the electrode materials. Hence, the hierarchical LiV3O8 nanofibers exhibit higher discharge capacities and better cycling stabilities as the anode electrode material for aqueous lithium‐ion batteries than those reported previously. We demonstrate that these hierarchical nanofibers have promising potential applications in aqueous lithium‐ion batteries. 相似文献
3.
Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance 下载免费PDF全文
Fei Zhou Dr. Sen Xin Dr. Hai‐Wei Liang Lu‐Ting Song Prof. Dr. Shu‐Hong Yu 《Angewandte Chemie (International ed. in English)》2014,53(43):11552-11556
Traditional lithium‐ion batteries that are based on layered Li intercalation electrode materials are limited by the intrinsically low theoretical capacities of both electrodes and cannot meet the increasing demand for energy. A facile route for the synthesis of a new type of composite nanofibers, namely carbon nanofibers decorated with molybdenum disulfide sheets (CNFs@MoS2), is now reported. A synergistic effect was observed for the two‐component anode, triggering new electrochemical processes for lithium storage, with a persistent oxidation from Mo (or MoS2) to MoS3 in the repeated charge processes, leading to an ascending capacity upon cycling. The composite exhibits unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior high‐rate capability, suggesting its potential application in high‐energy lithium‐ion batteries. 相似文献
4.
Robust SnO2−x Nanoparticle‐Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium‐Ion Batteries 下载免费PDF全文
Dingtao Ma Dr. Yongliang Li Dr. Hongwei Mi Shan Luo Prof. Peixin Zhang Prof. Zhiqun Lin Prof. Jianqing Li Prof. Han Zhang 《Angewandte Chemie (International ed. in English)》2018,57(29):8901-8905
The sluggish sodium reaction kinetics, unstable Sn/Na2O interface, and large volume expansion are major obstacles that impede practical applications of SnO2‐based electrodes for sodium‐ion batteries (SIBs). Herein, we report the crafting of homogeneously confined oxygen‐vacancy‐containing SnO2?x nanoparticles with well‐defined void space in porous carbon nanofibers (denoted SnO2?x/C composites) that address the issues noted above for advanced SIBs. Notably, SnO2?x/C composites can be readily exploited as the working electrode, without need for binders and conductive additives. In contrast to past work, SnO2?x/C composites‐based SIBs show remarkable electrochemical performance, offering high reversible capacity, ultralong cyclic stability, and excellent rate capability. A discharge capacity of 565 mAh g?1 at 1 A g?1 is retained after 2000 cycles. 相似文献
5.
Linlin Li Dr. Shengjie Peng Yanling Cheah Yahwen Ko Peifen Teh Grace Wee Dr. Chuiling Wong Prof. Madhavi Srinivasan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(44):14823-14830
Hierarchical CaCo2O4 nanofibers (denoted as CCO‐NFs) with a unique hierarchical structure have been prepared by a facile electrospinning method and subsequent calcination in air. The as‐prepared CCO‐NFs are composed of well‐defined ultrathin nanoplates that arrange themselves in an oriented manner to form one‐dimensional (1D) hierarchical structures. The controllable formation process and possible formation mechanism are also discussed. Moreover, as a demonstration of the functional properties of such hierarchical architecture, the 1D hierarchical CCO‐NFs were investigated as materials for lithium‐ion batteries (LIBs) anode; they not only delivers a high reversible capacity of 650 mAh g?1 at a current of 100 mA g?1 and with 99.6 % capacity retention over 60 cycles, but they also show excellent rate capability with respect to counterpart nanoplates‐in‐nanofibers and nanoplates. The high specific surface areas as well as the unique feature of hierarchical structures are probably responsible for the enhanced electrochemical performance. Considering their facile preparation and good lithium storage properties, 1D hierarchical CCO‐NFs will hold promise in practical LIBs. 相似文献
6.
Dr. Heng‐guo Wang De‐long Ma Yun Huang Prof. Dr. Xin‐bo Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(29):8987-8993
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies. 相似文献
7.
Hristo Penchev Dilyana Paneva Nevena Manolova Iliya Rashkov 《Macromolecular bioscience》2009,9(9):884-894
Hybrid nanofibers from chitosan or N‐carboxyethylchitosan (CECh) and silver nanoparticles (AgNPs) were prepared by electrospinning using HCOOH as a solvent. AgNPs were synthesized in situ in the spinning solution. HCOOH slowed down the cross‐linking of the polysaccharides with GA enabling the reactive electrospinning in the presence of poly(ethylene oxide) (PEO). EDX analyses showed that AgNPs are uniformly dispersed in the nanofibers. Since AgNPs hampered the cross‐linking of chitosan and CECh with GA in the hybrid fibers, the imparting of water insolubility to the fibers was achieved at a second stage using GA vapors. The surface of chitosan/PEO/AgNPs nanofibers was enriched in chitosan and 15 wt.‐% of the incorporated AgNPs were on the fiber surface as evidenced by XPS.
8.
Elastic and Wearable Wire‐Shaped Lithium‐Ion Battery with High Electrochemical Performance 下载免费PDF全文
Jing Ren Ye Zhang Wenyu Bai Xuli Chen Zhitao Zhang Xin Fang Wei Weng Dr. Yonggang Wang Prof. Huisheng Peng 《Angewandte Chemie (International ed. in English)》2014,53(30):7864-7869
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications. 相似文献
9.
10.
Electrospun Highly Ordered Mesoporous Silica–Carbon Composite Nanofibers for Rapid Extraction and Prefractionation of Endogenous Peptides 下载免费PDF全文
Gang‐Tian Zhu Dr. Xi Chen Xiao‐Mei He Han Wang Zheng Zhang Prof. Dr. Yu‐Qi Feng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(11):4450-4456
A simple method was developed for the preparation of ordered mesoporous silica–carbon composite nanofibers (OMSCFs). The OMSCFs exhibited high carbon content, continuously long fibrous properties, uniform accessible mesopores, and a large surface area. The OMSCFs were also found to have ion‐exchange capacity. On the basis of the size‐exclusion effect of the mesopores and mixed‐mode hydrophobic/ion‐exchange interactions, the OMSCFs were applied for rapid enrichment of endogenous peptides by using a miniaturized solid‐phase extraction format. The adsorption mechanism was studied, and the eluting solution was optimized with standard peptide/protein solutions and protein digests. Employing a successive three‐step elution strategy, followed by LC‐MS/MS analysis, led to excellent performance with this approach in the extraction and prefractionation of peptides from human serum. 相似文献
11.
12.
Reziwanguli Aihemaitituoheti Nuha A. Alhebshi Tuerdimaimaiti Abudula 《Molecules (Basel, Switzerland)》2021,26(18)
Supercapacitors have been considered as one of the main energy storage devices. Recently, electrospun nanofibers have served as promising supercapacitor electrodes because of their high surface area, high porosity, flexibility, and resistance to aggregation. Here, we investigate the effects of electrospinning parameters and nickel precursors on the nanostructure of electrospun nickel oxide (NiO), as well as on their electrochemical performance as supercapacitor electrodes. In contrast to the case of using nickel nitrate, increasing the nickel acetate molar concentration maintains the flexible fibrous sheet morphology of the as-spun sample during the polycondensation and calcination of NiO. As a result, our flexible electrode of NiO nanofibers derived from nickel acetate (NiO-A) exhibits much better electrochemical performance values than that of nickel nitrate-derived NiO. To further improve the electrochemical storage performance, we combined NiO-A nanofibers with single-walled carbon nanotubes (CNTs) as a hybrid electrode. In both half-cell and full-cell configurations, the hybrid electrode displayed a higher and steadier areal capacitance than the NiO-A nanofibers because of the synergetic effect between the NiO-A nanofibers and CNTs. Altogether, this work demonstrates the potency of the hybrid electrodes combined with the electrospun NiO-A nanofibers and CNTs for supercapacitor applications. 相似文献
13.
14.
Songwei Gao Nü Wang Shuai Li Dianming Li Zhimin Cui Guichu Yue Jingchong Liu Xiaoxian Zhao Lei Jiang Yong Zhao 《Angewandte Chemie (International ed. in English)》2020,59(6):2465-2472
Multi‐wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire‐in‐double‐wall‐tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin‐based electrode materials caused by volume expansion. Even after 2000 cycles, the wire‐in‐double‐wall‐tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g?1 (1 A g?1) and still maintains 508.2 mAh g?1 at high current density of 5 A g?1. This outstanding electrochemical performance suggests the multi‐wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems. 相似文献
15.
16.
Flexible and Stretchable Lithium‐Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs 下载免费PDF全文
Ye Zhang Wenyu Bai Dr. Xunliang Cheng Jing Ren Dr. Wei Weng Peining Chen Xin Fang Zhitao Zhang Prof. Huisheng Peng 《Angewandte Chemie (International ed. in English)》2014,53(52):14564-14568
The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium‐ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium‐ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. 相似文献
17.
Monodisperse Sandwich‐Like Coupled Quasi‐Graphene Sheets Encapsulating Ni2P Nanoparticles for Enhanced Lithium‐Ion Batteries 下载免费PDF全文
Yangyang Feng Dr. Huijuan Zhang Yanping Mu Wenxiang Li Prof. Dr. Junliang Sun Prof. Dr. Kai Wu Prof. Dr. Yu Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(25):9229-9235
In this report, sandwiched Ni2P nanoparticles encapsulated by graphene sheets are first synthesized by directly encapsulating functional units in graphene sheets instead of fabricating separate graphene sheets and then immobilizing the functional components onto the generated surfaces. In this strategy, we use low‐cost, sustainable and environmentally friendly glucose as a carbon source and NiNH4PO4 ? H2O nanosheets as sacrificial templates. This unique structure obtained here cannot only prevent the nanoparticles from aggregation or loss but also enhance the electronic conductivity compared to the independent nanoparticles. Furthermore, the novel sandwich‐like Ni2P/C can be applied in plenty of fields, especially in electrical energy storage. In this paper, a series of electrochemical tests of the sandwich‐like Ni2P/C are carried out, which demonstrate the excellent cyclic stability and rate capacity for lithium‐ion batteries. 相似文献
18.
Residual Metal Impurity Aids Facile In Situ Electrochemical Surface Derivatization of Single‐Walled Carbon Nanotubes 下载免费PDF全文
Sidhureddy Boopathi Rajagopal Sudha Shanmugam Senthil Kumar Kanala Lakshminarasimha Phani 《化学:亚洲杂志》2014,9(11):3264-3268
Residual metal impurities were exploited as reactants in the functionalization of the surface of single‐walled carbon nanotubes (SWCNT) with nickel hexacyanoferrate (NiHCF) by simple electrochemical cycling in ferricyanide solutions. This facile in situ electrochemical modification process provides intimate contact between NiHCF and SWCNTs that improves the stability of the redox property and reactivity of NiHCF. The characteristic redox behavior of NiHCF on SWCNT surfaces can be used as an electrochemical probe to access qualitative and quantitative information on unknown electroactive metal impurities in SWCNTs. Significantly, the NiHCF‐modified SWCNTs exhibit pseudocapacitive behavior, and the calculated specific capacitances are 710 and 36 F g?1 for NiHCF‐SWCNTs and SWCNTs respectively. Furthermore, NiHCF‐SWCNTs were transformed into Ni(OH)2/SWCNTs and used for enzymeless glucose oxidation. 相似文献
19.
In Situ Three‐Dimensional Synchrotron X‐Ray Nanotomography of the (De)lithiation Processes in Tin Anodes 下载免费PDF全文
Dr. Jiajun Wang Dr. Yu‐chen Karen Chen‐Wiegart Dr. Jun Wang 《Angewandte Chemie (International ed. in English)》2014,53(17):4460-4464
The three‐dimensional quantitative analysis and nanometer‐scale visualization of the microstructural evolutions of a tin electrode in a lithium‐ion battery during cycling is described. Newly developed synchrotron X‐ray nanotomography provided an invaluable tool. Severe microstructural changes occur during the first delithiation and the subsequent second lithiation, after which the particles reach a structural equilibrium with no further significant morphological changes. This reveals that initial delithiation and subsequent lithiation play a dominant role in the structural instability that yields mechanical degradation. This in situ 3D quantitative analysis and visualization of the microstructural evolution on the nanometer scale by synchrotron X‐ray nanotomography should contribute to our understanding of energy materials and improve their synthetic processing. 相似文献
20.
Dawei Su Hyun‐Soo Kim Woo‐Seong Kim Prof. Dr. Guoxiu Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(26):8224-8229
Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one‐dimensional nanostructures were analysed by field‐emission SEM, high‐resolution TEM and N2 adsorption/desorption isotherm measurements. When applied as the anode material in lithium‐ion batteries, the as‐prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g?1 as electrodes in supercapacitors. 相似文献