首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocyclometalated compound [Rh2{(C8H4S)P(C8H5S)2}(CH3CO2H)2(O2CCH3)3] ( 1 a ) and bis‐cyclometalated compound [Rh2{(C8H4S)P(C8H5S)2}2(CH3CO2H)2(O2CCH3)2] ( 2 a ) have been isolated from the reaction of dirhodium tetraacetate and tris(2‐benzo[b]thienyl)phosphine ( 2 BTP ) using low acidic solutions. By contrast, in pure acetic acid the reaction of Rh2(O2CCH3)4 with 2 BTP and tris(2‐thienyl)phosphine ( 2 TP ), followed by replacement of the axial acetate ligands by chlorides, led to [Rh2{(2‐C8H5 S )P(2‐C8H5S)2}2Cl2(O2CCH3)2] ( 3 b ) and [Rh2{(2‐C4H3 S )P(C4H3S)2}2Cl2(O2CCH3)2] ( 5 b ), respectively. These new dirhodium(II) compounds possess equatorial bridging ligands in a phosphorous–sulfur (P,S) coordination mode. The reversible switching between the P,C and P,S bonding mode of the phosphine has been studied in the monocyclometalated [Rh2{(C4H2S)P(C4H3S)2}(CH3CO2H)2(O2CCH3)3] ( 6 a ), which was selectively transformed into compound [Rh2{(2‐C4H3 S )P(C4H3S)2}(CF3SO3)(CH3CO2H)(O2CCH3)3] ( 7 c ) in triflic acid media. Remarkably, compound 7 c reverts to the starting compound 6 a upon treatment with sodium acetate. Theoretical DFT calculations for both the P,C/P,S rearrangement and the base‐promoted reversion have been performed to explain the experimental findings. Data suggest the P,C/P,S rearrangement occurs by means of a “concerted protonation–demetalation mechanism” followed by η2 coordination of the thienyl ring and subsequent isomerization to the S‐η1‐coordination mode. In the reversion reaction, the base coordinated at the axial position would promote a concerted metalation–deprotonation mechanism.  相似文献   

2.
The Phosphinophosphinidene-phosphoranes tBu2P? P = P(R)tBu2 from Li(THF)22-(tBu2P)2P] and Alkyl Halides We report the formation of tBu2P? P = P(R)tBu2 a and (tBu2)2PR b (with R = Me, Et, nPr, iPr, nBu, PhCH2, H2C = CH? CH2 and CF3) reactions of Li(THF)22-(tBu2P)2P] 2 with MeCl, MeI, EtCl, EtBr, nPrCl, nPrBr, iPrCl, nBuBr, PhCH2Cl, H2C = CH? CH2Cl or CF3Br. In THF solutions the ylidic compounds a predominate, whereas in pentane the corresponding triphosphanes b are preferrably formed. With ClCH2? CH = CH2 only b is produced; CF3Br however yields both tBu2P? P = P(Br)tBu2 and tBu2P? P = P(CF3)tBu2, but no b . The ratio of a:b is influenced by the reaction temperature, too. The compounds tBu2P? P = P(Et)tBu2 4a and (tBu2P)2PEt 4 b , e. g., are produced in a ratio of 4:3 at ?70°C in THF, and 1:1 at 20°C; whereas 1:1 is obtained at ?70°C in pentane, and 1:2 at 20°C. Neither tBuCl nor H2C = CHCl react with 2 . The compounds a decompose thermally or under UV irradiation forming tBu2PR and the cyclophosphanes (tBu2P)nPn.  相似文献   

3.
Synthesis and Crystal Structure of the Spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 The reaction of (i-Pr)2P(S)N(SiMe3)2 ( 1 ) with SnCl4 in 2:1 ratio yields under elimination of ClSiMe3 the four-membered spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 ( 2 ). The molecular structure of 2 was investigated by an X-ray structure analysis. Compound 2 crystallises in the monoclinic space group P21, Z = 2, a = 938.1(1), b = 1 424.1(2), c = 1 207.2(1) pm, β = 110.59(1)°, R = 2.05% for 4 102 reflexions. Compound 2 is a spirocycle with two Sn? N? P? S-rings joined at tin. The two rings are in cis-position.  相似文献   

4.
The induced codeposition mechanism of Mo, P and Ni from the solution of ammoniac citrate was studied by means of steady-state polarization, AC impedance and X-ray Photoelectron Spectroscopy (XPS). The result of electrochemical measurements proved that [NiCit(NHs)2]- is the electro-active species of nickel, though nickel ions exist mainly as [NiCit(NH3)3]? in ammoniac citrate. XPS experiments proved the existence of tetravalent molybdenum corresponding to MoO2 on the surface of mme deposits. The intermediate product, MoO2, WM probably reduced to Mo in the alloy deposit by atomic hydrogen adsorbed on the induced metal nickel. The reduction of H2PO?2 occurs through two distinctive steps with PH3 an an intermediate, which subsequently reacts with atomic hydrogen to form P in the alloy deposit. The electrodeposition mechanism was proposed in this paper.  相似文献   

5.
[iPr2P]2P? SiMe3 and [iPr2P]2PLi – Synthesis and Reactions Structure of [iPr2P]2P? P[PiPr2]2 [iPr2P]2P? SiMe3 1 and [iPr2P]2PLi 2 were prepared to investigate the influence of the bulky alkyl groups on formation and properties of the ylides R2P? P?P(X)R2 (R = iPr, tBu; X = Br, Me) in reactions of 1 with CBr4 and of 2 with 1,2-dibromoethane or MeCl, resp. Compared to the iPr groups the tBu groups favour the formation of ylides. With CBr4 1 forms iPr2P? P?P(Br)iPr2 5 just as a minor product which decomposes already below ?30°C. With 1,2-dibromoethane 2 yields only traces of 5 but [iPr2P]P? P[P(iPr)2]2 7 as main product. With MeCl 2 gives iPrP? P?P(Me)iPr2 9 and [iPr2P]2PMe 10 in a molar ratio of 1:1. 9 is considerably more stable than 5. 7 crystallizes triclinic in the space group P1 (No. 2) with a = 10.813 Å, b = 11.967 Å, c = 15.362 Å, α = 67.90°, β = 71.36°, γ = 64.11° and two formula units in the unit cell.  相似文献   

6.
This paper presents an experimental study of roughness characteristics of electroless Ni? P coatings. Optimization of coating process parameters is done with multiple surface roughness characteristics based on Taguchi method coupled with grey relational analysis. Experiments are carried out by utilizing the combination of process parameters based on L27 Taguchi orthogonal design with three process parameters, viz. bath temperature, concentration of nickel source solution and concentration of reducing agent. Results show that concentration of the reducing agent and its interaction with concentration of the nickel source solution have significant influence in controlling the roughness characteristics of electroless Ni? P coating. Grey‐based Taguchi method is found to optimize the coating parameters fairly well. The surface morphology and composition of coatings are also studied with the help of scanning electron microscopy, energy dispersed X‐ray analysis and X‐ray diffraction analysis. No significant change in nickel and phosphorous content of coatings occurs with annealing. The Ni? P deposit is nanocrystalline in the as‐plated condition, and upon heat treatment at 400 °C it produces Ni5P2, Ni2P, and NiP2 as major compound constituents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
10.
The Crystal Structure of Tetrakis(di-tert.-butylphosphino)diphosphane [(tBu)2P]2P? P[P(tBu)2]2 [(tBu)2P]2P? P[P(tBu)2]2 1 obtained at ?20°C from a solution of (tBu)2P? P=P(Br)tBu2 forms yellow crystals (regular hexagons). 1 crystallizes monoclinic in the space group C2/c with a = 2145.6pm, b = 1137pm, c = 1696.1pm, β = 110.075° and Z = 4 formula units in the elementary cell. Due to high steric load the bond angles at the tertiary P atoms with δ = 115.7° are significantly larger than those at the primary P atoms with δ = 108.6°.  相似文献   

11.
Reactions of tBu(Me3Si)P? P(Li)? P(tBu)2 with CH3Cl and 1,2-Dibromoethane tBu(Me3Si)P? P(Li)? P(tBu)2 · 0.95 THF 1 with CH3Cl (?70°C) yields tBu(Me3Si)P? P = P(Me)(tBu)2 2 at ?70°C, with 1,2-Dibromoethane tBu(Me3Si)P? PBr? P(tBu)2 3 (main product) and tBu(Me3Si)P? P?P(Br)tBu2 4. 3 eliminates Me3SiBr yielding the cyclotetraphosphane {tBuP? P[P(tBu)2]}2 5 .  相似文献   

12.
13.
14.
Herein we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply‐hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant.  相似文献   

15.
[(tBu)2P]2P? P[P(tBu)2]2 from LiP[P(tBu)2]2 and 1,2-Dibromomethane. Pyrolysis of tBu2P? P?P(Br)tBu2 All products of the reaction of [tBu2P]2PLi 1 with 1,2-dibromoethane 2 were investigated. Already at ?70°C tBu2P? P?P(Br)tBu2 3 as main product and [tBu2P]2PBr 4 are formed. Only with an excess of 1 also [tBu2P]P? P[P(tBu)2]2 5 is obtained. Warming of a pure solution of 3 in toluene from ?70°C to ?30°C leads to 4 , and at 20°C tBu2PBr and the cyclophosphanes P4[P(tBu)2]4 and P3[P(tBu)2]3 are observed. 5 does not result from 3 , it's rather a byproduct from the reaction of 1 with 4 . Also the ylide 3 and 1 yields 5 .  相似文献   

16.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

17.
tBu2P? P?P(X)tBu2 Ylides (X = Cl, Br, I) by Halogenation of [tBu2P]2P? SiMe3 [tBu2P]2P? SiMe3 1 with halogenating agents as Br2, I2, Br-succinimide, CCl4, CBr4, CI4 or C2Cl6 via cleavage of the Si? P bond in 1 produces the ylides tBu2P? P?P(X)tBu2 (X = Cl, Br, I). This proceeds independent from the formerly known pathway – [tBu2P]2PLi + 1,2-dibromoethane – and shows that the Li-phosphide must not be present as a necessary requirement for the formation of ylides.  相似文献   

18.
对氯硝基苯吸附在银纳米粒子上的偶联反应   总被引:1,自引:0,他引:1  
表面增强拉曼光谱(SERS)具有极高的检测灵敏度, 通过检测吸附分子的SERS信号, 可以获得表面吸附分子的结构以及可能发生的反应. 在拉曼激发光源的辐射下, 在碱性溶液中, 银纳米粒子表面吸附的对氯硝基苯(PCNB)的SERS光谱与其固体的常规拉曼光谱相比, 出现异常SERS谱. 通过采用密度泛函理论(DFT)计算, 对PCNB以及可能的偶联产物p,p''-二氯偶氮苯(DCAB)进行理论分析以及谱峰归属, 发现这些异常峰来自其偶联产物DCAB的偶氮C-N=N-C基团的基频振动.  相似文献   

19.
Coordination Chemistry of P-rich Phosphanes and Silylphasphanes. XIV. The Phosphinophosphinidene tBu2P? P as a Ligand in the Pt Complexes [η2-{tBu2P? P}Pt(PPh3)2] and [η2-{tBu2P? P}Pt(PEtPh2)2] [η2-{tBu2P? P}Pt(PPh3)2 1 and [η2-{tBu2P? P}Pt(PEtPh2)2] 2 are the first complex compounds of tBu2P? P 5 . They are formed in the reaction of tBu2P? P ? P(Me)tBu2 3 with [η2-{H2C ? CH2}Pt(PPh3)2] 6 or [η2-{H2C ? CH2}Pt(PEtPh2)2] 7 , respectively. Compound 1 is less stable than 2 and reacts on to [η2-{tBu2P? P} Pt(PPh3)(PtBu2Me)] 10 with the coincidently formed tBu2PMe. The molecular structures of 1 and 2 were derived from their 1H and 31P-NMR spectra, 2 was additionally characterized by a X ray structure determination. 2 crystallizes in the monoclinic space group P21/n with a = 1222.36(7) pm, b = 1770.7(1) pm, c = 1729.7(1) pm, β = 108.653(6)°.  相似文献   

20.
Abstract

A series of α-hydroxyphosphine oxides were prepared by the reactions of diphenylphosphine oxide and aromatic carbonyl compounds and characterized by 1H NMR, 13C NMR, 31P NMR, FT-IR, ESI-MS, and HR-MS spectra. The reaction rates and experimental conditions of aromatic aldehydes and aromatic ketones were obviously different due to the activity of their carbonyls. The different substituents of the aromatic aldehydes affected the reaction rate too, and the quantitative reactivity of their substituent conformed to the Hammett equation. The results were confirmed by 31P NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号