首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes a method for the simultaneous determination of 12 synthetic cannabinoids by MEKC–MS/MS using a volatile surfactant (ammonium perfluorooctanoate) as a constituent of the micellar pseudostationary phase. Although most synthetic cannabinoids comigrated by a CZE method, sufficient separation could be achieved by the proposed method. The best separation was made possible by 50 mM ammonium perfluorooctanoate in 20% v/v acetonitrile/water (apparent pH* 9.0) as the BGE, followed by MS detection using a sheath liquid composed of 5 mM ammonium formate in 50% v/v methanol/water mixed hydro‐organic solvent. The standard calibration curve for all analytes showed good linearity (r > 0.99). Satisfactory recoveries, ranging from 89.5 to 101.7%, were obtained. The LODs were 6.5–76.5 μg/g for the target analytes. This method appears to be a useful tool for the identification of synthetic cannabinoids in illegal herbal incense blends.  相似文献   

2.
Kok MG  de Jong GJ  Somsen GW 《Electrophoresis》2011,32(21):3016-3024
Analyte responses in CE‐ESI‐MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure‐induced infusion and CE‐MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water–methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R2>0.99). This BGE yielded lower limits of detection (0.7–9.1 μM) for most test compounds when compared with common CE‐MS methods using a BGE and SL containing ammonium acetate (NH4Ac) (25 and 5 mM, respectively). CE‐MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH4Ac‐containing BGE and SL, employing a bare fused‐silica (BFS) and Polybrene‐dextran sulfate‐Polybrene (PB‐DS‐PB)‐coated capillary, respectively. With the CE‐MS method using TEA, about 170 molecular features were observed that were not detected with the NH4Ac‐based CE‐MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH4Ac‐containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE‐MS.  相似文献   

3.
Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid--pH 1.8--in 70:30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75:25-25:75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.  相似文献   

4.
The native form of Cu,Zn‐superoxide dismutase (SOD‐1) is a homodimer that coordinates one Cu2+ and one Zn2+ per monomer. Cu2+ and Zn2+ ions play crucial roles in enzyme activity and structural stability, respectively. In addition, dimer formation is essential for SOD‐1 functionality, and in humans several SOD‐1 mutant isoforms have been associated with certain types of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder. In this paper we used capillary electrophoresis and mass spectrometry to study the different structures of bovine SOD‐1. The metal ions of the native enzyme (Cu2,Zn2‐dimer SOD‐1) were released in acidic medium in order to obtain apo‐SOD‐1, which is a monomer. Both substances were analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and capillary electrophoresis with ultraviolet and electrospray ionization mass spectrometry detection (CE/UV and CE/ESI‐MS, respectively). With MALDI‐TOF‐MS, using matrices of sinapinic acid (SA) or 2,5‐dihydroxybenzoic acid (DHB) with or without trifluoroacetic acid (TFA), similar mass spectra were obtained for the metalated and non‐metalated samples. In both cases, an average molecular mass corresponding to the apo‐monomer SOD‐1 was calculated. This finding indicated that the metals were released from the Cu2,Zn2‐dimer SOD‐1 during sample preparation or ionization. For CE/UV and CE/ESI‐MS, two background electrolytes (BGEs) potentially compatible with ESI‐MS detection were used, namely 1 M of acetic acid (pH 2.3) and 10 mM of ammonium acetate (pH 7.3). Using a sheath liquid of 2‐propanol/water (60:40 v/v), with or without 0.1% v/v of formic acid, CE/ESI‐MS sensitivity was enhanced when the acidic BGE and the acidic sheath liquid were used. However, the electrophoretic profiles and the mass spectra obtained suggested that the metals of Cu2,Zn2‐dimer SOD‐1 were released, which generated the apo‐monomer during the electrophoretic separation. The neutral BGE provided enhanced conditions for the detection of the native enzyme. The differences between the mass spectra obtained for the Cu2,Zn2‐dimer and the apo‐monomer forms were significant and the presence of formic acid in the sheath liquid affected only sensitivity. Our results highlight the importance of selecting appropriate non‐denaturing separation and detection conditions to obtain reliable structural information about non‐covalent protein complexes by CE/ESI‐MS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A generic approach has been developed for coupling capillary electrophoresis (CE) using non-volatile background electrolytes (BGEs) with mass spectrometry (MS) using a sheath liquid interface. CE-MS has been applied for basic and bi-functional compounds using a BGE consisting of 100 mM of TRIS adjusted to pH 2.5 using phosphoric acid. A liquid sheath effect is observed which may influence the CZE separation and hence may complicate the correlation between CE-UV and CE-MS methods. The influence of the liquid sheath effect on the migration behavior of basic pharmaceuticals has been studied by simulation experiments, in which the BGE outlet vial is replaced by sheath liquid in a CE-UV experiment. As a consequence of the liquid sheath effect, phosphate based BGEs can be used without significant loss of MS sensitivity compared to volatile BGEs. The use of buffer constituents such as TRIS can lead to lower detection limits as loss of MS sensitivity can be compensated by better CE performance. TRIS based BGEs permit relatively high injection amounts of about 100 pmol while maintaining high resolution. The ESI-MS parameters were optimized for a generic method with maximum sensitivity and stable operation, in which the composition of the sheath liquid and the position of the capillary were found to be important. Furthermore, the nebulizing pressure strongly influenced the separation efficiency. The system showed stable performance for several days and a reproducibility of about 15% RSD in peak area has been obtained. Nearly all test compounds used in this study could be analyzed with an MS detection limit of 0.05% measured in scan mode using extracted ion chromatograms. As a result, CE-MS was found to be a valuable analytical tool for pharmaceutical impurity profiling.  相似文献   

6.
In this article, an approach has been developed for the analysis of some small peptides with similar pI values by CE‐ESI‐MS based on the online concentration strategy of dynamic pH junction. The factors affected on the separation, detection and online enrichment, such as BGE, injection pressure, sheath flow liquid and separation voltage have been investigated in detail. Under the optimum conditions, i.e. using 0.5 mol/L formic acid (pH 2.15) as the BGE, preparing the sample in 50 mM ammonium acetate solution (pH 7.5), 50 mbar of injection pressure for 300 s, using 7.5 mM of acetic acid in methanol–water (80% v/v) solution as the sheath flow liquid and 20 kV as the separation voltage, four peptides with similar pI values, such as L ‐Ala‐L ‐Ala (pI=5.57), L ‐Leu‐D ‐Leu (pI=5.52), Gly‐D ‐Phe (pI=5.52) and Gly‐Gly‐L ‐Leu (pI=5.52) achieved baseline separation within 18.3 min with detection limits in the range of 0.2–2.0 nmol/L. RSDs of peak migration time and peak area were in the range of 1.45–3.57 and 4.93–6.32%, respectively. This method has been applied to the analysis of the four peptides in the spiked urine sample with satisfactory results.  相似文献   

7.
CE-ESI-MS with a liquid sheath interface and IT mass analyzer was used for analysis of siderophores from different strains of Methylobacterium spp. citrus endophyte extracts. Three Methylobacterium strains were investigated according to positive bioassay tests. Bacteria cultures were grown under Fe(III) absence (siderophore producing cultures) and under Fe(III) presence (control cultures). Siderophores were extracted from culture supernatant with polystyrene resins. BGE and sheath-liquid composition were optimized, respectively, in order to assure both, best peak resolution and ESI-MS sensitivity. The best analysis conditions were obtained with 100 mmol/L ammonium bicarbonate at pH 8 as BGE and methanol:H(2)O 25:75 + 0.05% formic acid as sheath liquid. CZE-ESI-MS analysis revealed two possible siderophores, according to bacterium species, presenting M(r) of 1004.3 and 798.3 Da.  相似文献   

8.
Gao F  Zhang Z  Fu X  Li W  Wang T  Liu H 《Electrophoresis》2007,28(9):1418-1425
A hyphenated method of nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry (NACE-ESI-MS) is described for the simultaneous analysis of phospholipids. The best results were obtained with a mixed solution of methanol/ACN (40:60 v/v) containing 20 mM ammonium acetate and 0.5% acetic acid, under the applied voltage of 30 kV and capillary temperature of 25 degrees C. ESI-MS measurements were performed in the negative mode with methanol/ACN (40:60 v/v) containing 50 mM ammonium acetate as sheath liquid at a flow rate of 2 microL/min. Different phospholipid classes have been successfully separated within 16 min, and the molecular species of every single class have been identified by using MS(2) or MS(3), which generates characteristic fragments through CID. The developed method has been applied to analyze the phospholipids extracted from rat peritoneal surface and the molecular species of phospholipid classes are presented.  相似文献   

9.
Analyses of alkaloids in different products by NACE-MS   总被引:1,自引:0,他引:1  
Chiu CW  Liang HH  Huang HY 《Electrophoresis》2007,28(22):4220-4226
A simple method for the separation and characterization of five nicotine-related alkaloids by NACE employing UV and MS detections is described here for the first time. Several factors, including NACE parameters (compositions of running solution) and MS parameters (such as nature and flow rate of sheath liquid, pressure of nebulization gas, and flow rate of dry gas), were optimized in order to obtain both an adequate CE separation and high MS signals for the alkaloid compounds used in this study. A reliable CE separation of five alkaloids was achieved in 50 mM ammonium formate that was dissolved in an ACN/methanol mixture (50:50, v/v) of pH* 4.0 (apparent pH 4.0). The optimal electrospray MS measurement was carried out in the positive ionization mode using a coaxial sheath liquid composed of isopropyl alcohol and water in the ratio of 80:20 v/v at a flow rate of 180 microL/h. In addition, the proposed NACE method was also applied in the analyses of alkaloids in several products including chewing gums, beverages, and tobaccos. This NACE-MS method was found to provide a better detection ability and separation resolution for the analysis of nicotine alkaloids when compared to other aqueous CE-MS reports.  相似文献   

10.
A capillary electrophoresis (CE) method using non-aqueous (NA) separation solutions combined with an ion trap mass spectrometer (MS and MS/MS) as detection device is presented for the separation, identification and quantification of isoquinoline alkaloids from Fumaria officinalis. The best results were obtained with a mixture of acetonitrile-methanol (9:1, v/v) containing 60mM ammonium acetate and 2.2M acetic acid as running electrolyte and an applied voltage of 30 kV. Electrospray MS measurements were performed in the positive ionization mode with isopropanol-water (1:1, v/v) as sheath liquid at a flow rate of 3 microl/min. Alkaloids were detected as [M+H](+)-ions and showed typical fragmentation patterns in MS/MS experiments. The developed assay was used for the quantification of seven isoquinoline alkaloids representing different structural subtypes in Fumariae herba extracts and F. herba containing phytopharmaceuticals.  相似文献   

11.
A capillary electrophoresis-mass spectrometry (CE-MS) method using sheath liquid electrospray ionization interfacing was studied and optimized for the analysis of intact basic proteins. To prevent protein adsorption, capillaries with a noncovalent positively charged coating were utilized. Capillaries were coated by subsequent rinsing with solutions of Polybrene, dextran sulfate and Polybrene. The coating proved to be fully compatible with MS detection, causing no background signals and ionization suppression. The composition of the sheath liquid and BGE was optimized using the model proteins α-chymotrypsinogen A, ribonuclease A, lysozyme and cytochrome c. A sheath liquid of isopropanol-water-acetic acid (75:25:0.1, v/v/v) at 2 μL min−1 resulted in optimal signal intensities for most proteins, but caused dissociation of the heme group of cytochrome c. Optimum protein responses were obtained with a BGE of 50 mM acetic acid (pH 3.0), which allowed a baseline separation of the test protein mixture. Several minor impurities present in the mixture could be detected and provisionally identified using accurate mass and a protein modification database. The selectivity of the CE-MS system was investigated by the analysis of acetylated lysozyme. Eight highly related species, identified as non-acetylated lysozyme and lysozyme acetylated in various degrees, could be distinguished. The CE-MS system showed good reproducibility yielding interday (three weeks period) RSDs for migration time and peak area within 2% and 10%, respectively. With the CE-MS system, determination coefficients (R2) for protein concentration and peak area were higher than 0.996, whereas detection limits were between 11 and 19 nM.  相似文献   

12.
Zheng J  Jann MW  Hon YY  Shamsi SA 《Electrophoresis》2004,25(13):2033-2043
A method of coupling capillary zone electrophoresis (CZE) with electrospray ionization-mass spectrometry (ESI-MS) detection has been developed for monitoring an antiepileptic drug, lamotrigine (LTG) in human plasma. The CZE-MS was developed in three stages: (i) CZE separation and ESI-MS detection of LTG and tyramine (TRM, internal standard) were simultaneously optimized by studying the influence of CZE background electrolyte (BGE) pH, BGE ionic strength, and nebulizer pressure of the MS sprayer; (ii) sheath liquid parameters, such as pH, ionic strength, organic modifier content, and flow rate of the sheath liquid, were systematically varied under optimum CZE-MS conditions developed in the first stage; (iii) MS sprayer chamber parameters (drying gas temperature and drying gas flow rate) were varied for the best MS detection of LTG. The developed assay was finally applied for the determination of LTG in plasma samples. The linear range of LTG in plasma sample assay was between 0.1-5.0 microg/mL with a limit of detection as low as 0.05 microg/mL and run time less than 6 min. Finally, the concentration-time profile of LTG in human plasma sample was found to correlate well when CZE-ESI-MS was compared to a more established method of high-performance liquid chromatography with ultraviolet detection.  相似文献   

13.
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.  相似文献   

14.
The influence of instrumental parameters affecting the ionization in continuous full filling capillary electrochromatography/electrospray ionization mass spectrometry (CFF‐CEC/ESI‐MS) was investigated. The investigated parameters were the BGE and sheath liquid ion strength and organic modifier content, the nebulizer gas pressure, and the concentration of nanoparticles in the BGE. It was found that the nebulizer pressure had the largest influence on the separation efficiency and apparent retention. It was shown that even the lowest pressure investigated was sufficient to guide the nanoparticle flow away from the mass spectrometer inlet. A nebulizer pressure of 5 psi was found to be optimal; increasing the pressure significantly decreased the separation efficiency due to the generation of a hydrodynamic flow. Generally, the ion strength of both the BGE and the sheath liquid were found to have very moderate effects on the separation of a homologous series of dialkyl phthalates, whereas the ionization efficiency was found to be unaffected by the nanoparticles and the separation efficiency was found to increase with increasing concentrations up to 3.8 mg/mL, whereafter it was observed to drop. The optimized method was linear over a wide concentration range and presented LOD and LOQ more than threefold lower than those previously reported using CFF‐CEC/ESI‐MS.  相似文献   

15.
Nano-liquid chromatography-mass spectrometry (nano-LC-MS) was evaluated for the separation of basic compounds of pharmaceutical interest. The separation of selected beta-blockers, namely nadolol, oxprenolol, alprenolol and propranolol in the presence of terbutaline was performed using two 75 microm I.D. capillaries packed with two different RP18 stationary phases (SP). The best results concerning resolution and efficiency were achieved using the SP where free silanol groups were not present. As expected, this latter SP proved to be very efficient and symmetry factors were observed mainly in the case of the more retained analytes. Baseline resolution of all studied basic compounds was achieved with the Cogent bidentate C18 silica phase (CBC18) eluting analytes at 800 nL/min with a mobile phase containing 500 mM ammonium acetate pH 4.5-water-methanol (1:8:91, v/v/v). The separated basic compounds were revealed using on-column UV detector at 205 nm and electrospray-ion-trap mass spectrometer (ESI-MS). The packed capillary was connected to the MS through a commercial sheath liquid interface or a sheathless nano-spray interface and in both cases the sensitivity was studied and the results compared. Limit of detection (LOD) as low as 0.1 ng/mL was measured for nadolol using the sheathless nano-spray interface and the capillary column packed with the CBC18 stationary phase.  相似文献   

16.
Non‐aqueous capillary electrophoresis–mass spectrometry (NACE‐MS) was developed for trace analyses of β‐agonists (i.e. clenbuterol, salbutamol and terbutaline) in pork. The NACE was in 18 mM ammonium acetate in methanol–acetonitrile–glacial acetic acid (66 : 33 : 1, v/v/v) using a voltage of 28 kV. The hyphenation of CE with a time‐of‐flight MS was performed by electrospray ionization interface employing 5 mM ammonium acetate in methanol–water (80 : 20, v/v) as the sheath liquid at a flow rate of 2 μL/min. Method sensitivity was enhanced by a co‐injection technique (combination of hydrodynamic and electrokinetic injection) using a pressure of 50 mbar and a voltage of 10 kV for 12 s. The method was validated in comparison with HPLC–MS‐MS. The NACE‐MS procedure provided excellent detection limits of 0.3 ppb for all analytes. Method linearity was good (r2 > 0.999, in a range of 0.8–1000 ppb for all analytes). Precision showed %RSDs of <17.7%. Sample pre‐treatment was carried out by solid‐phase extraction using mixed mode reversed phase/cation exchange cartridges yielding recoveries between 69 and 80%. The NACE‐MS could be successfully used for the analysis of β‐agonists in pork samples and results showed no statistical differences from the values reported by the Ministry of Public Health, Thailand using HPLC‐MS‐MS method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
CE and hydrogen-deuterium (H/D) exchange MS are useful tools in the analysis and characterisation of peptides. This study reports the facile coupling of these tools in the H/D exchange CE-MS analysis of model and pharmaceutically important peptides, using a sheath flow interface. The peptides varied in mass from 556 (leucine enkephalin) to 1620 Da (bombesin), and in charge state from 0.33 (leucine enkephalin) to 3.0 (substance P). The application of a BGE composed of ammonium formate buffer (25 mM, pD 3.5 in D(2)O (>98% D atom)), a sheath liquid composed of formic acid (0.25% v/v in D(2)O) and ACN (30:70 v/v), and dissolving the samples in a mixture of ACN/D(2)O (50:50 v/v) facilitates complete H/D exchange. Because of complete H/D exchange the ESI mass spectra produced are easy to interpret and comparable to those obtained from LC-MS analysis. The CE-H/D-MS approach has the advantage of requiring lower volumes of deuterated solvents. The b- and y-series fragments produced by using in-source decomposition correspond to those predicted. With the peptides studied, the complete exchange H/D exchange observed with both the molecular and fragment ions helps to confirm both amino acid composition and sequence.  相似文献   

18.
Ali I  Aboul-Enein HY 《Electrophoresis》2003,24(12-13):2064-2069
The chiral resolution of baclofen was achieved by capillary electrophoresis using a fused-silica capillary (60 cm x 75 microm ID). The background electrolyte (BGE) was phosphate buffer (pH 7.0, 50 mM)-acetonitrile (95:5 v/v) containing 10 mM beta-cyclodextrin. The applied voltage was 15 kV. The values of alpha and R(s) were 1.06 and 1.00, respectively. The electrophoretic conditions were optimized varying the pH and the ionic strength of the BGE, concentrations of beta-cyclodextrin and acetonitrile and the applied voltage.  相似文献   

19.
A CE–MS method has been developed to detect trace levels of potentially genotoxic alkyl halides. After derivatization of the target components with 4-dimethylaminopyridine (DMAP) or butyl 1-(pyridinyl-4yl) piperidine 4-carboxylate (BPPC), the natively positively charged derivatives are pre-concentrated by applying electrokinetic injection and separated by a highly efficient CZE method using a background electrolyte (BGE) consisting of 100 mM of TRIS adjusted to pH 2.5 with phosphoric acid. Using a sheath liquid interface, subsequent MS detection allows highly specific and sensitive analysis of alkyl halides.  相似文献   

20.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号