首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polysaccharides (PSs), such as dextran, yeast mannan, starch and amylose, were modified with complexes of six‐valent osmium with nitrogen ligands [Os(VI)L] and voltammetric behavior of PS‐Os(VI)L adducts was studied at mercury and carbon electrodes. Using Os(VI)temed as a modification agent and adsorptive transfer stripping (ex situ) method it was possible to determine PSs at submicromolar concentrations directly in the reaction mixture in an excess of monomeric glucose or sucrose both at Hg and carbon electrodes. Conventional (in situ) PS determination in the reaction mixture was possible only with mercury electrodes. The above methods have great potentiality in biological research.  相似文献   

2.
Polysaccharides and oligosaccharides were modified with Os(VI)pyridine complex followed by ligand exchange with different ligands such as 2,2′‐bipyridine or N,N,N′,N′‐tetramethylethylenediamine. The time of the modification was much shorter (taking about 15 min) then direct modification with the given Os(VI) complex. The resulting saccharide adducts were analyzed by voltammetric methods at carbon and mercury electrodes. The results showed that the proposed technique gives promise for a new approach to analysis of glycoproteins.  相似文献   

3.
Osmium tetroxide complexes with nitrogen ligands [Os(VIII)L] have been widely applied as probes of the DNA structure and as electroactive labels of DNA. Here we describe the electrochemical behavior of Os(VIII)2,2‐bipyridine (Os, bipy)‐base‐labeled nucleosides. We show that electroactive label can be introduced also in the nucleoside ribose residues using six‐valent osmium complex. Cyclic voltammograms of sugar‐Os(VI)‐modified ribosides are similar but not identical to those of the base‐modified ribosides. Our results showing the electroactivity of sugar modified ribosides pave the way to facile end‐labeling of RNA.  相似文献   

4.
《Electroanalysis》2018,30(2):371-377
Modification of nucleic acids with osmium tetroxide reagents (Os,L, such as OsO4,2,2′‐bipyridine, Os,bpy) has been applied in redox DNA labeling, in probing DNA structure as well as in studies of DNA interactions with other molecules. In natural DNA, primarily thymine residues form adducts with the Os,bpy in a structure selective manner. In this paper we introduce a new two‐step technique of DNA modification with the electroactive Os,bpy, consisting in enzymatic construction of DNA bearing butyl acrylate (BA) moieties attached to uracil at C5 or to 7‐deaza adenine at C7, followed by chemical modification of a reactive C=C double bond in the acrylate residue. We demonstrate a facile modification of the BA conjugates in both single‐ and double‐stranded (ds) DNA under conditions when modification within the nucleobase rings in ds DNA is hindered. Various DNA−Os,bpy adducts can easily be analyzed electrochemically and distinguished by different redox potentials. The two‐step procedure appears to be applicable in osmium redox labelling of ds DNA.  相似文献   

5.
Reactions between the Os(VI)-nitrido salts (e.g., trans-[Os(VI)(tpy)(Cl)(2)(N)]PF(6) (tpy = 2,2':6',2"-terpyridine), cis-[Os(VI)(tpy)(Cl)(2)(N)]PF(6), and fac-[Os(VI)(tpm)(Cl)(2)(N)]PF(6) (tpm = tris(pyrazol-1-yl)methane)) and the hydroxylamines (e.g., H(2)NOH and MeHNOH) and the methoxylamines (e.g., H(2)NOMe and MeHNOMe) in dry MeOH at room temperature give three different types of products. They are Os(II)-dinitrogen (e.g., trans-, cis-, or fac-[Os(II)-N(2)]), Os(II)-nitrosyl [Os(II)-NO](+) (e.g., trans- or cis-[Os(II)-NO](+)), Os(IV)-hydroxyhydrazido (e.g., cis-[Os(IV)-N(H)N(Me)(OH)](+)), and Os(IV)-methoxyhydrazido (e.g., trans-/cis-[Os(IV)-N(H)N(H)(OMe)](+), and trans-/cis-[Os(IV)-N(H)N(Me)(OMe)](+)) adducts. The products depend in a subtle way on the electron content of the starting nitrido complexes, the nature of the hydroxylamines, the nature of the methoxylamines, and the reaction conditions. Their appearance can be rationalized by invoking the formation of a series of related Os(IV) adducts which are stable or decompose to give the final products by two different pathways. The first involves internal 2-electron transfer and extrusion of H(2)O, MeOH, or MeOMe to give [Os(II)-N(2)]. The second which gives [Os(II)-NO](+) appears to involve seven-coordinate Os(IV) intermediates based on the results of an (15)N-labeling study.  相似文献   

6.
Ribose at the 3′-end of oligonucleotides (oligos) selectively modified by Os(VI)2,2′-bipyridine (bipy) produced two CV redox couples at pyrolytic graphite electrode. Using square wave voltammetry (SWV) 22-mer oligos can be detected down to 250 nM. At mercury electrodes the Os(VI)bipy-oligo adducts produced an electrocatalytic peak at ~?1.2 V allowing their determination down to picomolar concentrations. High specificity of Os(VI)bipy for ribose in nucleic acids and high sensitivity of the determination at mercury and solid amalgam electrodes give promise for new efficient methods of microRNA determination.  相似文献   

7.
Paleček E  Trefulka M 《The Analyst》2011,136(2):321-326
Electroinactive polysaccharides (PS) modified by osmium(VI) complexes with nitrogenous ligands produce redox couples at carbon and mercury electrodes. We show that PS adducts with Os(VI) 2,2'-bipyridine produce at ~-1.2 V (against Ag/AgCl/3 M KCl electrode) an additional peak at mercury and solid amalgam electrodes. This peak is due to the catalytic hydrogen evolution, allowing detection of PS (such as dextran and mannan) at picomolar concentrations.  相似文献   

8.
Voltammetric behavior of oligodeoxynucleotide (ODN) 5′‐T40 (GAA)7–3′ end‐labeled with osmium tetroxide,2,2‐bipyridine [Os(VIII)bipy] was compared with Os(VIII)bipy‐base‐ and with Os(VI)bipy‐sugar‐modified thymine ribosides. Cyclic voltammograms of Os(VIII)bipy‐modified ODN at mercury and carbon electrodes were similar but not identical to those of Os(VIII)bipy‐modified thymine riboside. Treatment of the ODN with Os(VI)bipy did not result in the ODN modification, in agreement with the known specificity of the reagent to the sugar cis‐diols. We show that in addition to mercury and carbon electrodes, the gold electrode can be used to detect Os(VIII)bipy‐labeled ODN. Comparison of voltammetric behavior of end‐labeled ODN using three types of electrodes most frequently used in DNA analysis may help to optimize electrochemical DNA sensors.  相似文献   

9.
Reaction between the Os(VI) nitrido (OsVI identical to N+) complexes [OsVI(L3)(Cl)2(N)]+ (L3 is 2,2':6',2"-terpyridine (tpy) or tris(1-pyrazolyl)methane (tpm)) and secondary amines (HN(CH2)4O = morpholine, HN(CH2)4CH2 = piperidine, and HN(C2H5)2 = diethylamine) gives Os(V)-hydrazido complexes, [OsV(L3)(Cl)2(NNR2)]+ (NR2 = morpholide, piperidide, or diethylamide). They can be chemically or electrochemically oxidized to Os(VI) or reduced to Os(IV) and Os(III). The Os-N bond lengths and Os-N-N angles in the structures of these complexes are used to rationalize the bonding between the dianionic hydrazido ligand and Os. The rate law for formation of the Os(V) hydrazido complexes with morpholine as the base is first order in [OsVI(L3)(Cl)2(N)]+ and second order in HN(CH2)4O with ktpy(25 degrees C, CH3CN) = (581 +/- 12) M-2 s-1 and ktpm(25 degrees C, CH3CN) = 2683 +/- 40 M-2 s-1. The proposed mechanism involves initial nucleophilic attack of the secondary amine on the Os(VI) nitrido group to give a protonated Os(IV)-hydrazido intermediate. It is subsequently deprotonated and then oxidized by OsVI identical to N+ to Os(V). The extensive redox chemistry for these complexes can be explained by invoking a generalized bonding model. It can also be used to assign absorption bands that appear in the electronic from the visible-near-infrared spectra including a series of d pi-->d pi interconfigurational bands at low energy.  相似文献   

10.
采用原位 红外反射 光谱(in_situ F T I R S) 结合紫 外可见 光谱( U V/ Vis) 和 电化学循 环伏安技术( C V) ,研究了[ Os V I( N)( N H3) 4]( C F3 S O3) 3 的 电化 学诱 导桥 氮偶 联过 程. 首次 在 Pt 电 极上检测到桥 氮 混 合 价 锇 物 种[ Os_ N ≡ N_ Os] 及 其 随 电 位 的 变 化 过 程 . 在 约 2 m m ol/ L 〔 Os V I( N)( N H3) 4〕( C F3 S O3) 3 + 0 .1 m ol/ L T B A H 的乙腈溶 液中,选 取0 .4 ~- 1 .0 V 电位 区间 100 m V/s 扫描速度 ,对 Pt 或 G C 电 极进行电 化学循环 伏安处 理,处 理 后的 电极 表 面均 可积 累 一层 深绿 色 的沉积物,表 明电化 学诱导 N_ N 偶联效 应已在 电极上 发生, 并形 成了 混合 价 桥氮 络合 物. 同时 ,在 上述过程中 所生成 的混合价 锇氮物种 ,有可能 较强地 吸附在电 极表 面,且 形成 一定 厚度 的表 面层, 从而减缓了 体系中 Os V I≡ N 物种在电 极上的 继续还 原.同 时可 以看 到,随 着 C V 的 不 断进 行,溶 液 颜色将逐渐 地由黄变 绿.经过 长时间( 约  相似文献   

11.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

12.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

13.
Reactions between the Os(VI)-nitrido complexes cis- and trans-[Os(VI)(tpy)(Cl)2(N)]+ (tpy is 2,2':6',2"-terpyridine) and triphenylphosphine sulfide, SPPh3, give the corresponding Os(IV)-phosphoraniminato, [Os(IV)(tpy)(Cl)2(NPPh3)]+, and Os(II)-thionitrosyl, [Os(II)(tpy)(Cl)2(NS)]+, complexes as products. The Os-N bond length and Os-N-P angle in cis-[Os(IV)(tpy)(Cl)2(NPPh3)](PF6) are 2.077(6) A and 138.4(4) degrees. The rate law for formation of cis- and trans-[Os(IV)(tpy)(Cl)2(NPPh3)]+ is first order in both [Os(VI)(tpy)(Cl)2(N)]+ and SPPh3 with ktrans(25 degrees C, CH3CN) = 24.6 +/- 0.6 M(-1) s(-1) and kcis(25 degrees C, CH3CN) = 0.84 +/- 0.09 M(-1) s(-1). As found earlier for [Os(II)(tpm)(Cl)2(NS)]+, both cis- and trans-[Os(II)(tpy)(Cl)2(NS)]+ react with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3. For both complexes, the reaction is first order in each reagent with ktrans(25 degrees C, CH3CN) = (6.79 +/- 0.08) x 10(2) M(-1) s(-1) and kcis(25 degrees C, CH3CN) = (2.30 +/- 0.07) x 10(2) M(-1) s(-1). The fact that both reactions occur rules out mechanisms involving S atom transfer. These results can be explained by invoking a common intermediate, [Os(IV)(tpy)(Cl)2(NSPPh3)]+, which undergoes further reaction with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3 or with [Os(VI)(tpy)(Cl)2(N)]+ to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and [Os(II)(tpy)(Cl)2(NS)]+.  相似文献   

14.
Potential biological and medical applications of organometallic complexes are hampered by a lack of knowledge of their aqueous solution chemistry. We show that the hydrolytic and aqueous solution chemistry of half-sandwich OsII arene complexes of the type [(eta6-arene)Os(XY)Cl] can be tuned with XY chelating ligands to achieve cancer cell cytoxicity comparable to carboplatin. Complexes containing arene = p-cymene, XY = N,O-chelating ligands glycinate (1), L-alaninate (2), alpha-aminobutyrate (3), beta-alaninate (4), picolinate (5), or 8-hydroxyquinolinate (7) were synthesized. Although, 1-4 and 7 hydrolyzed rapidly (相似文献   

15.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

16.
Relatively little is known about the kinetics or the pharmacological potential of organometallic complexes of osmium compared to its lighter congeners, iron and ruthenium. We report the synthesis of seven new complexes, [(eta6-arene)Os(NN)Cl]+, containing different bidentate nitrogen (N,N) chelators, and a dichlorido complex, [(eta6-arene)Os(N)Cl2]. The X-ray crystal structures of seven complexes are reported: [(eta6-bip)Os(en)Cl]PF6 (1PF6), [(eta6-THA)Os(en)Cl]BF4 (2BF4), [(eta6-p-cym)Os(phen)Cl]PF6 (5PF6), [(eta6-bip)Os(dppz)Cl]PF6 (6PF6), [(eta6-bip)Os(azpy-NMe2)Cl]PF6 (7PF6), [(eta6-p-cym)Os(azpy-NMe2)Cl]PF6 (8PF6), and [(eta6-bip)Os(NCCH3-N)Cl2] (9), where THA = tetrahydroanthracene, en = ethylenediamine, p-cym = p-cymene, phen = phenanthroline, bip = biphenyl, dppz = [3,2-a: 2',3'-c]phenazine and azpy-NMe2 = 4-(2-pyridylazo)-N,N-dimethylaniline. The chelating ligand was found to play a crucial role in enhancing aqueous stability. The rates of hydrolysis at acidic pH* decreased when the primary amine N-donors (NN = en, t1/2 = 0.6 h at 318 K) are replaced with pi-accepting pyridine groups (e.g., NN = phen, t1/2 = 9.5 h at 318 K). The OsII complexes hydrolyze up to 100 times more slowly than their RuII analogues. The pK*a of the aqua adducts decreased with a similar trend (pK*a = 6.3 and 5.8 for en and phen adducts, respectively). [(eta6-bip)Os(en)Cl]PF6/BF4 (1PF6/BF4) and [(eta6-THA)Os(en)Cl]BF4 (2BF4) were cytotoxic toward both the human A549 lung and A2780 ovarian cancer cell lines, with IC50 values of 6-10 microM, comparable to the anticancer drug carboplatin. 1BF4 binds to both the N7 and phosphate of 5'-GMP (ratio of 2:1). The formation constant for the 9-ethylguanine (9EtG) adduct [(eta6-bip)M(en)(9EtG)]2+ was lower for OsII (log K = 3.13) than RuII (log K = 4.78), although the OsII adduct showed some kinetic stability. DNA intercalation of the dppz ligand in 6PF6 may play a role in its cytotoxicity. This work demonstrates that the nature of the chelating ligand can play a crucial role in tuning the chemical and biological properties of [(eta6-arene)Os(NN)Cl]+ complexes.  相似文献   

17.
《Electroanalysis》2003,15(21):1687-1692
Interfacial activity of uranium(VI)‐cupferron and uranium(VI)‐chloranilic acid (CAA) complexes (in 0.1 M acetate buffer pH 4.6 or 0.1 M NaClO4 respectively) on polarized mercury electrode at 110 mV, 10 mV or ?240 mV respectively vs. saturated calomel electrode (SCE), and under conditions of the application of adsorptive stripping voltammetric techniques was studied. It revealed a competitive effect of interfacial activity of the mentioned complexes consisting in a nonmonotonous effect of the bulk concentration of U(VI) on the adsorption of the mentioned complexing reagents at their constant concentrations. At concentrations lower than 5×10?5 mol L?1 the complexes U(VI)‐cupferron or U(VI)‐CAA exhibited a relatively strong electrosorption providing the adsorption coefficients β of the order 104 L mol?1, the maximum surface excess Γm ≈ 5 to 10 μmol m?2 and average Frumkin interaction coefficients reaching their absolute values 2 to 2.6.  相似文献   

18.
The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.  相似文献   

19.
Oxo(tert-butylimido) or bis(tert-butylimido)osmium(VI) porphyrins Os(Por)(O)(NBut) and Os(Por)(NBut)2, [Por=meso-tetrakis(p-tolyl)porphyrinato (TTP) and meso-tetrakis(4-chlorophe-nyl)porphyrinato (4-Cl-TPP)] were synthesized by air oxidation of bis(tert-butylamme)osmium(II) porphyrins [Os(Por)(H2NBut)2 (Por=TPP, 4-Cl-TPP], depending on whether tert-butylamine is present. The bis(tert-butylamine)ruthenium(II) porphyrins [Ru(Por)(H2NBut)2, Por=TTP, 4-Cl-TPP] can undergo bromine oxidation to give oxo(tert-butylimido)ruthenium(VI) complexes in quantitative yields. All these new complexes were characterized by 1H NMR, UV-Visible and IR spectroscopy. The X-ray crystal structures of Os(TTP)(O)(NBut).EtOH and Os(4-Cl-TPP)(NBut)2 have been determined. Crystal data: for Os(TTP)(O)(NBut).EtOH: monoclinic, space group P21/c, a=1.3546(6) nm, b=2.3180(3) nm, c=1.6817(3) nm, B=90.84(2), V=527.97(1) nm3, Z=4. The Os=O and Os=NBut distances in Os(TTP)(O)(NBut).EtOH are 0.1772(7) nm and 0.1759(9) nm, respectively. The av  相似文献   

20.
Treatment of [N(n)Bu(4)][Os(VI)(N)Cl(4)] with a stoichiometric amount of H(2)L (L = N,N'-bis(salicylidene)-o-cyclohexylenediamine dianion) in the presence of PF(6)(-) or ClO(4)(-) in MeOH affords [Os(VI)(N)(L)(OH(2))](PF(6)) 1a and [Os(VI)(N)(L)(CH(3)OH)](ClO(4)) 1b, respectively. The structure of 1b has been determined by X-ray crystallography and the Os≡N bond distance is 1.627(3) ?. In the presence of a N-donor heterocyclic ligand in CH(3)CN, 1a reacts at room temperature to afford the mixed-valence μ-N(2) (salen)osmium species [(X)(L)Os(III)-N≡N-Os(II)(L)(X)](PF(6)), 2-14 (X = py 2; 4-Mepy 3; 4-(t)Bupy 4; pz 5; 3-Mepz 6; 3,5-Me(2)pz 7; Im 8; 1-MeIm 9; 2-MeIm 10; 4-MeIm 11; 1,2-Me(2)Im 12; 2-Meozl 13; 4-MeTz 14). These complexes are formed by ligand-induced N···N coupling of two [Os(VI)≡N](+) to give initially [Os(III)-N(2)-Os(III)](2+), which is then reduced to give the more stable mixed-valence species [Os(III)-N(2)-Os(II)](+). Cyclic voltammograms (CVs) of 2-14 show two reversible couples, attributed to Os(III,III)/Os(III,II) and Os(III,II)/Os(II,II). The large comproportionation constants (K(com)) of (5.36-82.3) × 10(13) indicate charge delocalization in these complexes. The structures of 3 and 14 have been determined by X-ray crystallography, the salen ligands are in uncommon cis-β configuration. Oxidations of 4 and 14 by [Cp(2)Fe](PF(6)) afford the symmetrical species [(X)(L)Os(III)-N≡N-Os(III)(L)(X)](PF(6))(2) (X = 4-(t)Bupy 15; 4-MeTz 16). These are the first stable μ-N(2) diosmium(III,III) complexes that have been characterized by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号