首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfürth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.  相似文献   

2.
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfürth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.  相似文献   

3.
The Petrov–Galerkin method has been developed with the primary goal of damping spurious oscillations near discontinuities in advection dominated flows. For time‐dependent problems, the typical Petrov–Galerkin method is based on the minimization of the dispersion error and the simultaneous selective addition of dissipation. This optimal design helps to dampen the oscillations prevalent near discontinuities in standard Bubnov–Galerkin solutions. However, it is demonstrated that when the Courant number is less than 1, the Petrov–Galerkin method actually amplifies undershoots at the base of discontinuities. This is shown in an heuristic manner, and is demonstrated with numerical experiments with the scalar advection and Richards' equations. A discussion of monotonicity preservation as a design criterion, as opposed to phase or amplitude error minimization, is also presented. The Petrov–Galerkin method is further linked to the high‐resolution, total variation diminishing (TVD) finite volume method in order to obtain a monotonicity preserving Petrov–Galerkin method.  相似文献   

4.
In this work, the immersed element‐free Galerkin method (IEFGM) is proposed for the solution of fluid–structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is modeled using the finite element method and the solid domain is modeled using the element‐free Galerkin method. The continuity between the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving least‐squares technique. The method was applied to simulate the motion of a deformable disk moving in a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical investigation is performed to study the solution of natural and mixed convection flows by Galerkin‐characteristic method. The method is based on combining the modified method of characteristics with a Galerkin finite element discretization in primitive variables. It can be interpreted as a fractional step technique where convective part and Stokes/Boussinesq part are treated separately. The main feature of the proposed method is that, due to the Lagrangian treatment of convection, the Courant–Friedrichs–Lewy (CFL) restriction is relaxed and the time truncation errors are reduced in the Stokes/Boussinesq part. Numerical simulations are carried out for a natural convection in squared cavity and for a mixed convection flow past a circular cylinder. The computed results are compared with those obtained using other Eulerian‐based Galerkin finite element solvers, which are used for solving many convective flow models. The Galerkin‐characteristic method has been found to be feasible and satisfactory. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A high‐order Petrov–Galerkin finite element scheme is presented to solve the one‐dimensional depth‐integrated classical Boussinesq equations for weakly non‐linear and weakly dispersive waves. Finite elements are used both in the space and the time domains. The shape functions are bilinear in space–time, whereas the weighting functions are linear in space and quadratic in time, with C0‐continuity. Dispersion correction and a highly selective dissipation mechanism are introduced through additional streamline upwind terms in the weighting functions. An implicit, conditionally stable, one‐step predictor–corrector time integration scheme results. The accuracy and stability of the non‐linear discrete equations are investigated by means of a local Taylor series expansion. A linear spectral analysis is used for the full characterization of the predictor–corrector inner iterations. Based on the order of the analytical terms of the Boussinesq model and on the order of the numerical discretization, it is concluded that the scheme is fourth‐order accurate in terms of phase velocity. The dissipation term is third order only affecting the shortest wavelengths. A numerical convergence analysis showed a second‐order convergence rate in terms of both element size and time step. Four numerical experiments are addressed and their results are compared with analytical solutions or experimental data available in the literature: the propagation of a solitary wave, the oscillation of a flat bottom closed basin, the oscillation of a non‐flat bottom closed basin, and the propagation of a periodic wave over a submerged bar. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
9.
IntroductionThenonlinearGalerkinmethodisamulti_levelschemetofindtheapproximatesolutionforthedissipativePDE .ThismethodhasfirstmainlybeenaddressedbyFoias_Manley_Temam[1],Marion_Temam[2 ],Foias_Jolly_Kevrekidis_Titi[3]andDevulder_Marion_Titi[4 ]inthecaseofspect…  相似文献   

10.
The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.  相似文献   

11.
12.
An efficient adjoint sensitivity technique for optimally collecting targeted observations is presented. The targeting technique incorporates dynamical information from the numerical model predictions to identify when, where and what types of observations would provide the greatest improvement to specific model forecasts at a future time. A functional (goal) is defined to measure what is considered important in modelling problems. The adjoint sensitivity technique is used to identify the impact of observations on the predictive accuracy of the functional, then placing the sensors at the locations with high impacts. The adaptive (goal) observation technique developed here has the following features: (i) over existing targeted observation techniques, its novelty lies in that the interpolation error of numerical results is introduced to the functional (goal), which ensures the measurements are a distance apart; (ii) the use of proper orthogonal decomposition (POD) and reduced order modelling for both the forward and backward simulations, thus reducing the computational cost; and (iii) the use of unstructured meshes. The targeted adaptive observation technique is developed here within an unstructured mesh finite element model (Fluidity). In this work, a POD reduced order modelling is used to form the reduced order forward model by projecting the original complex model from a high dimensional space onto a reduced order space. The reduced order adjoint model is then constructed directly from the reduced order forward model. This efficient adaptive observation technique has been validated with two test cases: a model of an ocean gyre and a model of 2D urban street canyon flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present an explicit formulation for reduced‐order models of the stabilized finite element approximation of the incompressible Navier–Stokes equations. The basic idea is to build a reduced‐order model based on a proper orthogonal decomposition and a Galerkin projection and treat all the terms in an explicit way in the time integration scheme, including the pressure. This is possible because the reduced model snapshots do already fulfill the continuity equation. The pressure field is automatically recovered from the reduced‐order basis and solution coefficients. The main advantage of this explicit treatment of the incompressible Navier–Stokes equations is that it allows for the easy use of hyper‐reduced order models, because only the right‐hand side vector needs to be recovered by means of a gappy data reconstruction procedure. A method for choosing the optimal set of sampling points at the discrete level in the gappy procedure is also presented. Numerical examples show the performance of the proposed strategy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We develop in this paper a discretization for the convection term in variable density unstationary Navier–Stokes equations, which applies to low‐order non‐conforming finite element approximations (the so‐called Crouzeix–Raviart or Rannacher–Turek elements). This discretization is built by a finite volume technique based on a dual mesh. It is shown to enjoy an L2 stability property, which may be seen as a discrete counterpart of the kinetic energy conservation identity. In addition, numerical experiments confirm the robustness and the accuracy of this approximation; in particular, in L2 norm, second‐order space convergence for the velocity and first‐order space convergence for the pressure are observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper deals with the analysis of a new augmented mixed finite element method in terms of vorticity, velocity, and pressure, for the Brinkman problem with nonstandard boundary conditions. The approach is based on the introduction of Galerkin least‐squares terms arising from the constitutive equation relating the aforementioned unknowns and from the incompressibility condition. We show that the resulting augmented bilinear form is continuous and elliptic, which, thanks to the Lax–Milgram theorem, and besides proving the well‐posedness of the continuous formulation, ensures the solvability and stability of the Galerkin scheme with any finite element subspace of the continuous space. In particular, Raviart–Thomas elements of any order for the velocity field, and piecewise continuous polynomials of degree k + 1 for both the vorticity and the pressure, can be utilized. A priori error estimates and the corresponding rates of convergence are also given here. Next, we derive two reliable and efficient residual‐based a posteriori error estimators for this problem. The ellipticity of the bilinear form together with the local approximation properties of the Clément interpolation operator are the main tools for showing the reliability. In turn, inverse inequalities and the localization technique based on triangle‐bubble and edge‐bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of the method, confirming the properties of the estimators and showing the behavior of the associated adaptive algorithms, are reported. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we propose a numerical algorithm for time‐dependent convection–diffusion–reaction problems and compare its performance with the well‐known numerical methods in the literature. Time discretization is performed by using fractional‐step θ‐scheme, while an economical form of the residual‐free bubble method is used for the space discretization. We compare the proposed algorithm with the classical stabilized finite element methods over several benchmark problems for a wide range of problem configurations. The effect of the order in the sequence of discretization (in time and in space) to the quality of the approximation is also investigated. Numerical experiments show the improvement through the proposed algorithm over the classical methods in either cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A virtual‐characteristic approach is developed for thermo‐flow with finite‐volume methodology in which a multidimensional characteristic (MC) scheme is applied along with artificial compressibility. To obtain compatibility equations and pseudo‐characteristics, energy equation is taken into account in the MC scheme. With this inherent upwinding of convective fluxes, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of the MC scheme lies in its faster convergence rate with respect to the averaging scheme that is found to exhibit substantial delays in convergence. As benchmarks, forced and mixed convections in a cavity and in flow over cylinder and between parallel plates are examined for a wide range of Reynolds, Grashof, and Prandtl numbers. The MC and averaging schemes are applied for simulation purposes. Results show the better performance of the MC scheme in forced and mixed convections. Results confirm the robustness of the MC scheme in terms of accuracy and convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号