首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

2.
New glycosyl donors have been developed that contained several para‐substituted O‐aryl protecting groups and their stereoselectivity for the glycosylation reaction was evaluated. A highly β‐selective glycosylation reaction was achieved by using thioglycosides that were protected by 4‐nitrophenyl (NP) groups, which were introduced by using the corresponding diaryliodonium triflate. Analysis of the stereoselectivities of several glycosyl donors indicated that the β‐glycosides were obtained through an SN2‐type displacement from the corresponding α‐glycosyl triflate. The NP group could be removed by reduction of the nitro group and acylation, followed by oxidation with ceric ammonium nitrate (CAN).  相似文献   

3.
A microwave‐assisted glycosylation method was developed for efficient synthesis of oligosaccharides. Di‐functional AB monomers, 2,3,4‐tri‐O‐acetyl‐α‐d ‐galactopyranosyl bromide ( 3a ) and 2,3,4‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl bromide ( 3b ) were designed and synthesized as weakly reactive monomers to avoid unwanted glycosylation or degradation during preparation and storage. The glycosylations of these monomers gave low conversions and low molecular weight oligosaccharides at rt, reflux, and under low microwave energy irradiation. However, the glycosylation became very effective when high microwave energy was applied, giving 100% conversion and producing oligosaccharides with Mn = 4.76 kDa for 3a and Mn = 4.05 kDa for 3b. The acetylated oligosaccharides were further subjected to deprotection for structural analysis, which indicated the oligosaccharides contain predominantly linear β‐(1,6)‐glycosyl linkages. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3693–3699  相似文献   

4.
A number of novel chiral diamines 3 , (1R,2R)‐N‐monoalkylcyclohexane‐1,2‐diamines, were designed and synthesized from trans‐cyclohexane‐1,2‐diamine and applied to the catalytic asymmetric Henry reaction of benzaldehyde and nitromethane to provide β‐nitroalcohol in high yield (up to 99%) and good enantiomeric excess (up to 89%). By using ligand (1R,2R)‐N1‐(4‐methylpentan‐2‐yl)cyclohexane‐1,2‐diamine ( 3g ), the reaction was optimized in terms of the metal ion, temperature, solvent and base. Further experiments indicated that the complex, 3g –Cu(OAc)2, was an efficient catalyst in the asymmetric Henry reaction between different aldehydes and nitromethane, and the desired products have been obtained with high chemical yields (up to 99%) and high enantiomeric excess (up to 93%). The optimized catalyst promoted the diastereoselective Henry reaction of various aldehyde substrates and nitroalkane, which gave the corresponding anti‐selective adduct with up to 99% yield and 83:17 anti/syn selectivity. Upon scaling up to gram quantities, the β‐nitroalcohol was obtained in good yield (96%) with excellent selectivities (93% ee). The chiral induction mechanism was tentatively explained on the basis of a previously proposed transition‐state model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We have investigated the polymorphic phase transformations above ambient temperature for 3‐chloro‐trans‐cinnamic acid (3‐ClCA, C9H7ClO2) and a solid solution of 3‐ClCA and 3‐bromo‐trans‐cinnamic acid (3‐BrCA, C9H7BrO2). At 413 K, the γ polymorph of 3‐ClCA transforms to the β polymorph. Interestingly, the structure of the β polymorph of 3‐ClCA obtained in this transformation is different from the structure of the β polymorph of 3‐BrCA obtained in the corresponding polymorphic transformation from the γ polymorph of 3‐BrCA, even though the γ polymorphs of 3‐ClCA and 3‐BrCA are isostructural. We also report a high‐temperature phase transformation from a γ‐type structure to a β‐type structure for a solid solution of 3‐ClCA and 3‐BrCA (with a molar ratio close to 1:1). The γ polymorph of the solid solution is isostructural with the γ polymorphs of pure 3‐ClCA and pure 3‐BrCA, while the β‐type structure produced in the phase transformation is structurally similar to the β polymorph of pure 3‐BrCA.  相似文献   

6.
Chloroformylation of 5,5‐dimethyl‐1,2‐ oxathiolan‐4‐one 2,2‐dioxide 4 with Vilsmeier reagent (DMF/POCl3) led to the formation of cyclic β‐chloro‐vinylaldehyde (4‐chloro‐5,5‐dimethyl‐3‐formyl‐1,2‐oxathiolene 2,2‐dioxide 5 ). Compound 5 reacted with formamidine, o‐aminophenol, 1,2‐phenylenediamine, aminopyrazole, and aminotetrazole to give the corresponding heterocyclic compounds. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:200–204, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20094  相似文献   

7.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

8.
Glycosyl ortho‐alkynylbenzoates have emerged as a new generation of donors for glycosidation under the catalysis of gold(I) complexes such as Ph3PAuOTf and Ph3PAuNTf2 (Tf=trifluoromethanesulfonate). A wide variety of these donors, including 2‐deoxy sugar and sialyl donors, are easily prepared and shelf stable. The glycosidic coupling yields with alcohols are generally excellent; even direct coupling with the poorly nucleophilic amides gives satisfactory yields. Moreover, excellent α‐selective glycosylation with a 2‐deoxy sugar donor and β‐selective sialylation have been realized. Application of the present glycosylation protocol in the efficient synthesis of a cyclic triterpene tetrasaccharide have further demonstrated the versatility and efficacy of this new method, in that a novel chemoselective glycosylation of the carboxylic acid and a new one‐pot sequential glycosylation sequence have been implemented.  相似文献   

9.
天然氨基甘油糖脂sn-1,2-dipalmitoyl-3-(N-palmitoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 3 和 sn-1-palmitoyl-2-myristoyl-3-(N-stearoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 4 通过简便有效的合成策略首次被合成。其关键步骤为:三氯亚胺酯糖基供体 10 与 (S)-isopropyleneglycerol 在乙醚溶液中发生糖苷化反应,立体选择性的生成3-O-(2,3,4-tri-O-benzyl-6-dehydroxy-6-benzyloxycarbonylamino-α-D- glucopyranoyl)-1,2-O-isopropylene-sn- glycerol 7。中间体 7 经过脱除丙酮叉、与不同的脂肪酸缩合、脱除保护基和选择性的在氨基上酰化,最终得到目标化合物 3 和 4。  相似文献   

10.
In the title complex, {[Ag(C12H10N2)]NO3}n, the Ag atom, which is in a linear AgN2 geometry, is surrounded by two trans‐related N atoms of two bpe ligands [Ag—N = 2.173 (3) and 2.176 (3) Å; bpe is trans‐1,2‐bis(2‐pyridyl)­ethyl­ene]. The bpe ligands bridge neighbouring Ag atoms to form zigzag polymeric chains in the lattice. These adjacent one‐dimensional zigzag chains are extended into a three‐dimensional supramolecular array by strong interchain π?π interactions between the pyridyl rings of adjacent chains.  相似文献   

11.
Methyl β‐D‐mannopyranosyl‐(1→4)‐β‐D‐xylopyranoside, C12H22O10, (I), crystallizes as colorless needles from water, with two crystallographically independent molecules, (IA) and (IB), comprising the asymmetric unit. The internal glycosidic linkage conformation in molecule (IA) is characterized by a ϕ′ torsion angle (O5′Man—C1′Man—O1′Man—C4Xyl; Man is mannose and Xyl is xylose) of −88.38 (17)° and a ψ′ torsion angle (C1′Man—O1′Man—C4Xyl—C5Xyl) of −149.22 (15)°, whereas the corresponding torsion angles in molecule (IB) are −89.82 (17) and −159.98 (14)°, respectively. Ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atom in the β‐Xylp and β‐Manp residues, respectively. By comparison, the internal glycosidic linkage in the major disorder component of the structurally related disaccharide, methyl β‐D‐galactopyranosyl‐(1→4)‐β‐D‐xylopyranoside), (II) [Zhang, Oliver & Serriani (2012). Acta Cryst. C 68 , o7–o11], is characterized by ϕ′ = −85.7 (6)° and ψ′ = −141.6 (8)°. Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Man in both (IA) and (IB) [O3Xyl...O5′Man internuclear distances = 2.7268 (16) and 2.6920 (17) Å, respectively], analogous to the inter‐residue hydrogen bond detected between atoms O3Xyl and O5′Gal in (II). Exocyclic hydroxymethyl group conformation in the β‐Manp residue of (IA) is gauche–gauche, whereas that in the β‐Manp residue of (IB) is gauche–trans.  相似文献   

12.
2‐Aryl‐4,5,6,7‐tetrahydro‐1,2‐benzisothiazol‐3(2H)‐ones 1a – e were synthesized by cyclocondensation of 2‐(thiocyanato)cyclohexene‐1‐carboxanilides 9 as a convenient new method. Their S‐oxides 10 were prepared by two routes, either by oxidation of 1 or dehydration of rac‐cis‐3‐hydroperoxysultims 11 . Furthermore, compounds 1 have been identified by HPLC? API‐MS‐MS as intermediates in the oxidation process of the salts 6 . The hydroperoxides 12b and rac‐trans‐ 11b have been unambiguously detected by HPLC? MS investigations and in the reaction of rac‐cis‐ 13b with H2O2 to the hydroperoxides rac‐trans‐ 11b and rac‐cis‐ 11b .  相似文献   

13.
The conformations of peptides and proteins are often influenced by glycans O‐linked to serine (Ser) or threonine (Thr). (2S,4R)‐4‐Hydroxyproline (Hyp), together with L ‐proline (Pro), are interesting targets for O‐glycosylation because they have a unique influence on peptide and protein conformation. In previous work we found that glycosylation of Hyp does not affect the N‐terminal amide trans/cis ratios (Ktrans/cis) or the rates of amide isomerization in model amides. The stereoisomer of Hyp—(2S,4S)‐4‐hydroxyproline (hyp)—is rarely found in nature, and has a different influence both on the conformation of the pyrrolidine ring and on Ktrans/cis. Glycans attached to hyp would be expected to be projected from the opposite face of the prolyl side chain relative to Hyp; the impact this would have on Ktrans/cis was unknown. Measurements of 3J coupling constants indicate that the glycan has little impact on the Cγendo conformation produced by hyp. As a result, it was found that the D ‐galactose residue extending from a Cγendo pucker affects both Ktrans/cis and the rate of isomerization, which is not found to occur when it is projected from a Cγexo pucker; this reflects the different environments delineated by the proline side chain. The enthalpic contributions to the stabilization of the trans amide isomer may be due to disruption of intramolecular interactions present in hyp; the change in enthalpy is balanced by a decrease in entropy incurred upon glycosylation. Because the different stereoisomers—Hyp and hyp—project the O‐linked carbohydrates in opposite spatial orientations, these glycosylated amino acids may be useful for understanding of how the projection of a glycan from the peptide or protein backbone exerts its influence.  相似文献   

14.
cis‐2,6‐Tetrahydropyran is an important structural skeleton of bioactive natural products. A facile synthesis of cis‐2,6‐disubstituted‐3,6‐dihydropyrans as cis‐2,6‐tetrahydropyran precursors has been achieved in high regio‐ and stereoselectivity with high yields. This reaction involves a palladium‐catalyzed decarboxylative allylation of various 3,4‐dihydro‐2H‐pyran substrates. Extending this reaction to 1,2‐unsaturated carbohydrates allowed the achievement of challenging β‐C‐glycosylation. Based on this methodology, the total syntheses of (±)‐centrolobine and (+)‐decytospolides A and B were achieved in concise steps and overall high yields.  相似文献   

15.
Lewis acids catalyzed highly efficient one‐pot three component coupling of β‐naphthol, benzaldehydes and urea to produce 1‐aryl‐1,2‐dihydro‐naphtho[1,2‐e][1,3]oxazin‐3‐one derivatives under solvent free conditions is described. Mechanistic studies confirmed that product formation is possible only at very high temperature (140–150°C) and at lower temperature (90–100°C) formation of 14‐aryl‐14H‐dibenzo(a,j)xanthenes was observed. Among the nine Lewis acids screened, iodine, P2O5 and Yb(OTf)3 are found to be most effective catalyst for this multicomponent reaction.  相似文献   

16.
Addition reactions of thioamide dianions that were derived from N‐arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N‐thioacyl‐1,2‐diamines in a highly diastereoselective manner in good‐to‐excellent yields. The diastereomeric purity of these N‐thioacyl‐1,2‐diamines could be enriched by simple recrystallization. The reduction of N‐thioacyl‐1,2‐diamines with LiAlH4 gave their corresponding 1,2‐diamines in moderate‐to‐good yields with retention of their stereochemistry. The oxidative‐desulfurization/cyclization of an N‐thioacyl‐1,2‐diamine in CuCl2/O2 and I2/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N‐tosylaziridines gave the addition products of N‐thioacyl‐1,3‐diamines with low diastereoselectivity but high regioselectivity and in good‐to‐excellent yields. The use of AlMe3 as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X‐ray diffraction.  相似文献   

17.
Treatment of 1‐aryl‐1‐allen‐6‐enes with [PPh3AuCl]/AgSbF6 (5 mol %) in CH2Cl2 at 25 °C led to intramolecular [3+2] cycloadditions, giving cis‐fused dihydrobenzo[a]fluorene products efficiently and selectively. The reactions proceeded with initial formation of trans/cis mixtures of 2‐alkyl‐1‐isopropyl‐2‐phenyl‐1,2‐dihydronaphthalene cations B, which were convertible into the desired cis‐fused cycloadducts through the combined action of a gold catalyst and a Brønsted acid. Theoretic calculation supports the participation of the trans‐B cation as reaction intermediate. Although HOTf showed similar activity towards several 1‐aryl‐1‐allen‐6‐enes, it lacks generality for this cycloaddition reaction.  相似文献   

18.
The title complex, trans‐{μ‐2,2′‐[(1,2‐dioxoethane‐1,2‐diyl)­diimino]­diethano­ato(4−)}bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H4N2O6)(H2O)4]·2H2O, with a three‐dimensional framework, displays a square‐pyramidal coordination geometry. The structure consists of a neutral centrosymmetric binuclear unit in which the ox­amide ligand has a trans geometry, is fully deprotonated and acts in a bis‐tridentate fashion.  相似文献   

19.
β‐Aminoalkylboronic acids are bioisosteres of the pharmaceutically important class of β‐amino acids but few stereoselective methods exist for their preparation. The 1,2‐addition of lithiated 1,1‐diborylalkanes onto chiral Ntert‐butanesulfinyl aldimines produces β‐sulfinimido gem‐bis(boronates) in good to excellent yields with high diastereoselectivity. The optimized conditions involve the use of rubidium fluoride and water, and are compatible with functionalized alkyl, aryl, alkenyl, and alkynyl substituents. Under these conditions, the geminal quaternary alkyl bis(pinacolatoboryl) intermediates undergo a highly diastereoselective monoprotodeboronation to afford a wide range of syn‐α,β‐disubstituted β‐aminoalkylboronates. This novel application of protodeboronation chemistry was shown to result from a kinetically controlled, diastereotopic‐group‐selective B?C bond protolysis dictated by the configuration of the adjacent stereogenic C?N center. Facile acidic cleavage of the sulfinimide auxiliary produces the free aminoboronates with high enantiomeric purity.  相似文献   

20.
A simple and mild procedure was developed for the first time for the C(3)‐selective ring opening of an aromatic 2,3‐epoxy alcohol, i.e., of trans‐3‐phenyloxirane‐2‐methanol ( 1 ), with sodium phenoxides or thiophenoxides (=benzenethiolates) 2 supported by β‐cyclodextrin in H2O at 50° to afford the corresponding 3‐(aryloxy)‐ or 3‐(arylthio)propane1,2‐diols 3 in excellent yields (Scheme, Table).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号