首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(o-toluidine) (sodium dodecyl sulfate) (POT(SDS)) film was electrosynthesized on carbon paste electrode (CPE) by using the cyclic voltammetry technique in aqueous solution containing o-toluidine (OT), sulfuric acid and SDS. Then, copper oxide was incorporated by immersion of POT(SDS)/CPE in a solution of copper sulfate and using constant potential method. Then, the electrochemical characterization of the modified electrode is presented in alkaline solution. For the first time, electrochemical behaviour of amoxicillin (AMX) at the Cu/POT(SDS)/CPE has been investigated using cyclic voltammetry (CV) and chronoamperometric method. The experimental results suggest that the modified electrode exhibits electrocatalytic effect on the oxidation of AMX resulting in a marked enhancement of the anodic peak current response. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of AMX in the range 80–200 and 5–150 μM with CV and amperometric method, respectively. The detection limits (2δ) were also estimated to be 60 and 3 μM. Some kinetic parameters such as the transfer second-order rate constant (k = 4.9 × 106 cm3 mol–1 s–1) of AMX was calculated. Therefore, this modified electrode was a simple, rapid and new electrode to determine AMX in pharmaceutical preparations.  相似文献   

2.
A simple and sensitive method was used to develop a novel sensor for determination of dacarbazine on the surface of multi-walled carbon nanotubes/CuFe2O4 nanoparticles modified carbon paste electrode (MWCNTs/CuFe2O4/CPE). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of dacarbazine at the chemically modified electrode. According to the results, MWCNTs/CuFe2O4/CPE showed high electrocatalytic activity for dacarbazine oxidation, producing a sharp oxidation peak current at about +0.80 vs. Ag/AgCl reference electrode at pH 5.0. The peak current was linearly dependent on dacarbazine concentration over the range of 0.10–76.0 μmol L–1 with the detection limit (3σ) of 0.08 μmol L?1. In addition, chronoamperometry was also used to determine diffusion coefficient of dacarbazine at MWCNTs/CuFe2O4/CPE.  相似文献   

3.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

4.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

5.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

6.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

7.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

8.
《Electroanalysis》2005,17(10):873-879
A highly sensitive and fast responding sensor for the determination of morphine is described. The multiwall carbon nanotubes immobilize on preheated glassy carbon electrode (5 min at 50 °C) by gently rubbing of electrode surface on a filter paper supporting the carbon nanotubes.The results indicated that carbon nanotubes(CNTs) modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for morphine with relatively high sensitivity, stability and long life. Under conditions of cyclic voltammetry, the potential for oxidation of morphine is lowered by approximately 100 mV and the current is enhanced significantly (10 times) in comparison to the bare glassy carbon electrode at wide pH range (2–9). The electrocatalytic behavior is further exploited as a sensitive detection scheme for morphine determination by hydrodynamic amperometry. Under the optimized conditions the calibration plots are linear in the concentration range 0.5–150 μM with the calculated detection limit (S/N=3) of 0.2 μM and sensitivity of 10 nA/μM and a relative standard deviation (RSD) of 2.5% (n=10). The amperometric response is extremely stable, with no loss in sensitivity over a continual 30 min operation. Such attractive ability of multiwall carbon nanotubes (MWCNTs) modified GC electrode, suggests great promise for a morphine amperometric sensor. Finally the ability of the modified electrode was evaluated for simultaneous determination of morphine and codeine.  相似文献   

9.
A sensitive voltammetric technique has been developed for the determination of Fludarabine using amine‐functionalized multi walled carbon nanotubes modified glassy carbon electrode (NH2‐MWCNTs/GCE). Molecular dynamics simulations, an in silico technique, were employed to examine the properties including chemical differences of Fludarabine‐ functionalized MWCNT complexes. The redox behavior of Fludarabine was examined by cyclic, differential pulse and square wave voltammetry in a wide pH range. Cyclic voltammetric investigations emphasized that Fludarabine is irreversibly oxidized at the NH2‐MWCNTs/GCE. The electrochemical behavior of Fludarabine was also studied by cyclic voltammetry to evaluate both the kinetic (ks and Ea) and thermodynamic (ΔH, ΔG and ΔS) parameters on NH2‐MWCNTs/GCE at several temperatures. The mixed diffusion‐adsorption controlled electrochemical oxidation of Fludarabine revealed by studies at different scan rates. The experimental parameters, such as pulse amplitude, frequency, deposition potential optimized for square‐wave voltammetry. Under optimum conditions in phosphate buffer (pH 2.0), a linear calibration curve was obtained in the range of 2×10?7 M–4×10?6 M solution using adsorptive stripping square wave voltammetry. The limit of detection and limit of quantification were calculated 2.9×10?8 M and 9.68×10?8 M, respectively. The developed method was applied to the simple and rapid determination of Fludarabine from pharmaceutical formulations.  相似文献   

10.
《Electroanalysis》2017,29(4):1103-1112
Three dimensional graphene‐multiwalled carbon nanotube nano composite (3DG/MWCNTs−Nc) was synthesized by simple hydrothermal method for the amperometric determination of caffeic acid (CA). The prepared nanocomposite was characterized by scanning electron microscopic technique (SEM), ultraviolet‐visible spectroscopy (UV), Raman spectroscopy and infrared spectroscopy (IR). Moreover, the interfacial electron transfer properties of the modified electrode were carried out by the electro chemical impedance spectroscopy (EIS). Besides, the electro chemical performance of the modified electrode was carried out by the cyclic voltammetry (CV) and amperometric (i‐t ) technique. The proposed electrode was exhibited an enhanced electrocatalytic activity towards the detection of CA. Under the optimal condition, the 3DG/MWCNTs−Nc modified electrode displayed a linear range from 0.2 to 174 μM, detection limit (LOD) 17.8 nM and sensitivity of 5.8308 μA μM−1 cm−2 and on applied potential + 0.2 V. These result showed, 3DG/MWCNTs−Nc modified electrodes showed good repeatability, reproducibility, and higher stability. In addition, the fabricated electrode was then successfully used to determine the CA in real samples with satisfactory recoveries. Which suggests that the 3DG/MWCNTs−Nc as a robust sensing materials for the electrochemical detection of CA.  相似文献   

11.
The present study was aimed at investigating the use of a mixture multiwall carbon nanotube (MWCNT) and thionine (Th) dye in designing of a thionine‐based electrochemical biosensor containing catalase (Ct) enzyme (MWCNT‐Nafion‐Th/Ct) onto a glassy carbon electrode (GCE). The effects of pH, MWCNT concentration and thionine concentration on electrochemical response were explored for optimum analytical performance. The modified electrode exhibited a pair of well‐defined, quasi‐reversible peaks at formal potential (Eo′) = ‐0.218 ± 0.017 V vs. Ag/AgCl corresponding to the Thox/Thred redox couples in the presence of MWCNT, Nafion, and Ct. The electrochemical parameters, including charge‐transfer coefficient (0.36), and apparent heterogeneous electron transfer rate constant (4.28 ± 0.26 s?1) were determined. Using differential pulse voltammetry, the prepared enzyme electrode exhibited a linear response to hydrogen peroxide (H2O2) in the range of 10.0‐100.0 μM with a detection limit 8.7 μM and a sensitivity of 6051.0 μA mM?1 cm?2.  相似文献   

12.
《Electroanalysis》2018,30(5):921-927
In this research, the high conductivity of nickel chloride solution as well as the ability of nickel ions in establishing particular bonds with curcumin was benefited to fabricate a new electrochemical sensor based on nickel chloride solution modified glassy carbon electrode (NiCl2/GCE) for detection and measurement of curcumin in human blood serum. Atomic force microscope (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) methods indicated that using nickel chloride solution for the modification of the glassy carbon electrode (GCE) surface had a significant effect on improvement of the electrode performance. Differential pulse voltammetry (DPV) was used for quantitative measurement of curcumin, which exhibited the linear response of NiCl2/GCE toward curcumin within the concentration range of 10–600 μM and provided the detection limit of 0.109 μM for curcumin in human blood serum.  相似文献   

13.
In the present study, the electrochemical oxidation of quercetin (QUR) was investigated using a graphite paste electrode (GPE) modified with multi-walled carbon nanotube and Lewatit FO36 nanoresin (LFONR-MWCNT/GPE). LFONR-MWCNT/GPE could effectively a sensitive anodic peak at around 0.23 V (vs. SCE) in a 0.10 M phosphate buffer solution. Modified electrode revealed that activated with multiwalled carbon nanotube and LFONR was capable of facilitating electron transfer and increasing surface area. The electrochemical oxidation of QUR was studied using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Some kinetic parameters for electrochemical oxidation of QUR including total number of electrons (n) and standard heterogeneous rate constant (ks) were also determined. The calibration graph consisted of two linear segments of 1.8–25.0 μM, and 25.0–570.0 μM with a detection limit of 0.213 μM (based on 3Sb). The applicability of the method to juice of peach, red grape, sour cherry and Gincora tablets analysis was also evaluated.  相似文献   

14.
Single‐wall carbon nanotubes (SWCNTs) were used as an immobilization matrix to incorporate [Ir(ppy)2(phen‐dione)](PF6) complex onto a glassy carbon electrode for the study of electrocatalytic reduction of periodate ion. Detailed preliminary electrochemical data for the Ir(III)‐complex in acetonitrile solution and for the modified GCE/SWCNTs/[Ir(ppy)2(phen‐dione)](PF6)/CGE are presented. The modified electrode was applied to selective amperometric detection of periodate through its electrocatalytic reduction to iodide at 0.200 V and pH 2.0. The use of amperometry resulted in two calibration plots over the concentration ranges of 1‐20 μM and 20‐450 μM, with a detection limit of 0.6 μM and sensitivity of 198 nA μM?1.  相似文献   

15.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

16.
《Electroanalysis》2017,29(4):1088-1094
We delineate the electrochemical preparation of cobalt hydroxide nanoflakes Co(OH)2 NFs on multi‐walled carbon nanotubes (MWCNTs) by potentiostatic methods. The preparation was done on the surface of glassy carbon electrode (GCE). The prepared nanocomposite was characterized by field emission scanning electron microscopy (FESEM), X‐ray diffraction spectroscopy (XRD) and X‐ray photo electron spectroscopy (XPS). The resulting f‐ MWCNTs/Co(OH)2 NFs modified GCE exhibits a good electrocatalytic activity for the oxidation of hydrazine in terms of decreasing over potential and increasing peak current. The modified electrode holds good in the linear range from 0.5 to 15.5 μM with limit of detection as 87.5 nM. The sensitivity of our modified electrode is calculated to be 5733 μA/mM cm‐2. Remarkably, the obtained LOD value of our sensor is very lower compared to the recommended concentration of hydrazine in water by World health organization (WHO) and Environmental protective agency (EPA). The modified electrode detects hydrazine selectively even in the presence of common interferants. Various water samples were chosen to study the practical feasibility of our sensor. The sensor also exhibited an appreciable stability, repeatability and reproducibility.  相似文献   

17.
We report a simple and effective strategy for fabrication of the nanocomposite containing chitosan (CS) and multiwall carbon nanotube (MWNT) coated on a glassy carbon electrode (GCE). The characterization of the modified electrode (CS‐MWNT/GC) was carried out using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. The electrochemical behavior of CS‐MWNT/GC electrode was investigated and compared with the electrochemical behavior of chitosan modified GC (CS/GC), multiwalled carbon nanotube modified GC (MWNT/GC) and unmodified GC using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The chitosan films are electrochemically inactive; similar background charging currents are observed at bare GC. The chitosan films are permeable to anionic Fe(CN)63?/4? (FC) redox couple. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63?/4? redox probe at FC/CS‐MWNT/GC electrode is comparable to values reported for cast chitosan films. This modified electrode also showed electrocatalytic effect for the simultaneous determination of D‐penicillamine (D‐PA) and tryptophan (Trp). The detection limit of 0.9 μM and 4.0 μM for D‐PA and Trp, respectively, makes this nanocomposite very suitable for determination of them with good sensitivity.  相似文献   

18.
In this work a carbon paste electrode modified with multiwalled carbon nanotubes/β‐cyclodextrin (MWCNTs/β‐CD) was constructed and applied to the determination of nifedipine. The electrochemical behavior of nifedipine at this electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Characterization of the modified electrode was conducted with electrochemical impedance spectroscopy and scanning electron microscopy. After adsorption of nifedipine on the MWCNTs/β‐CD paste electrode at 0.0 V for 6 min, a well defined reduction peak was produced in sodium hydroxide of 0.05 M. The calibration curve was linear from 7.0×10?8 to 1.5×10?5 M. The detection limit was obtained as 2.5×10?8 M. The results demonstrated that this electrochemical sensor has excellent sensitivity and selectivity. This sensor was applied for determination of nifedipine in drug dosage and blood serum with excellent recoveries.  相似文献   

19.
In this study, glassy carbon electrode modified with nano gold‐crystal violet film has been used to detect arsenite (As (III)) in a model system and in groundwater samples. The modified electrode was characterized by scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). Using voltammetric measuring technique, linear response was obtained in a concentration range of 2.0–22.0 μM. The arsenite concentrations in groundwater samples varied between 2.4 μM to 4.8 μM. The sensitivity of the modified electrode for As (III) detection was 5.6 μA/μM cm2 and 0.8 μM concentration was found as lower limit of detection (LOD). The accuracy of the method was checked with standard method anodic stripping voltammetry (ASV). Groundwater samples were characterized with dynamic (DLS) and electrophoretic (ELS) light scattering measurements which have shown that particles present in different samples differ in size distribution and zeta potential which did not interfere with As (III) detection.  相似文献   

20.
A nanocomposite (Ho2O3NPs/BNT) was synthesized by decorating holmium(III)oxide nanoparticles (H2O3NPs) on bentonite (BNT) through a realizable sonochemical approach for the electrochemical detection of haloperidol (Hlp). A glassy carbon electrode was modified with this nanocomposite. The Ho2O3NPs/BNT modified electrode outperformed bare and other modified electrodes in terms of electrochemical performance for Hlp detection in a pH 8.0 phosphate buffer. The proposed electrochemical platform showed a wide linear range (0.01 μM–24 μM), low detection limit (2.4 nM), and high sensitivity by square wave voltammetry. In addition, the proposed electrochemical sensor met the clinical criteria in terms of stability, selectivity, and repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号