首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
A highly enantioselective [2,3] Wittig rearrangement of oxindole derivatives was realized by using a chiral N,N′‐dioxide/NiII complex as the catalyst under mild reaction conditions. A strong chiral amplification effect was observed, and allowed access to chiral 3‐hydroxy 3‐substituted oxindoles bearing allenyl groups in high yields and enantioselectivities (up to 92 % ee) by using a ligand with only 15 % ee. A reasonable explanation was given based on the experimental investigations and X‐ray crystal structures of enantiomerically pure and racemic catalysts. Moreover, the first catalytic kinetic resolution of racemic oxindole derivatives by a [2,3] Wittig rearrangement was realized with high efficiency and stereoselectivity.  相似文献   

2.
We have investigated the mechanism of chiral induction in the asymmetric [2,3]-Wittig rearrangement of allyl benzyl ether in the presence of a bis(oxazoline) chiral ligand [(S,S)-Box–tBu] by comparing the reaction of both enantiomers of monodeuterated benzyl ether 1ad. As a result, we found that chirality was induced via enantioselective deprotonation followed by efficient chirality transfer of the resulting chiral benzyl carbanion with the inversion of stereochemistry. It was revealed that the chiral ligand facilitates selective deprotonation as well as prevents the chiral carbanion from racemization. Moreover, we examined the effect of the o-methoxy substituent on the benzene ring.  相似文献   

3.
Enantioselective     
Even with only a catalytic amount of chiral bis(dihydrooxazole) 1 as external ligand, the rearrangement of benzyl ethers to alcohols [Eq. (1)] proceeds with high enantioselectivity (over 60 % ee). This reaction represents the first example of an enantioselective [1,2] Wittig rearrangement.  相似文献   

4.
A highly efficient enantioselective [2+2] cycloaddition between alkynones and cyclic enol silyl ethers was developed by using a chiral N,N′‐dioxide‐zinc(II) complex as a catalyst. This method functions well for a variety of terminal alkynes as well as cyclic enol silyl ethers, with good to excellent enantioselectivity (up to 97 % ee). This is also the first successful example for the catalytic enantioselective [2+2] cycloaddition of internal alkynes with cyclic enol silyl ethers to give fully substituted cyclobutenes. Meanwhile, the desired cyclobutene product can easily be transformed into fused cyclobutane derivatives.  相似文献   

5.
A highly enantioselective, chiral, Lewis acid calcium–bis(phosphate) complex, Ca[ 3 a ]n, which catalyzes the electrophilic amination of enamides with azodicarboxylate derivatives 2 to provide versatile chiral 1,2‐hydrazinoimines 4 is disclosed. The reaction gives an easy entry to optically active syn‐1,2‐disubstituted 1,2‐diamines 6 in high yields with excellent enantioselectivities, after a one‐pot reduction of the intermediate 1,2‐hydrazinoimines 4 . The geometry and nature of the N‐substituent of the enamide affect dramatically both the reactivity and the enantioselectivity. Although the calcium–bis(phosphate) complex was a uniquely effective catalyst, the exact nature of the active catalytic species remains unclear. NMR spectroscopy and MS analysis of the various calcium complexes Ca[ 3 ]n reveals that the catalysts exist in various oligomer forms. The present mechanistic study, which includes nonlinear effects and kinetic measurements, constitutes a first step in understanding these calcium–bis(phosphate) complex catalysts. DFT calculations were carried out to explore the mechanism and the origin of the enantioselectivity with the Ca[ 3 ]n catalysts.  相似文献   

6.
The transformation of ortho‐alkynylaryl ketones through a cyclization/enantioselective‐reduction sequence in the presence of a chiral silver phosphate catalyst afforded 1H‐isochromene derivatives in high yield with fairly good to high enantioselectivity. An asymmetric synthesis of the 9‐oxabicyclo[3.3.1]nona‐2,6‐diene framework, which has been found in some biologically active molecules, is presented as a demonstration of the synthetic utility of this method.  相似文献   

7.
We report herein the first examples of a palladium‐catalyzed enantioselective Cacchi reaction for the synthesis of indoles bearing a chiral C2‐aryl axis. In the presence of a catalytic amount of Pd(OAc)2 and (R,R)‐QuinoxP* ligand, reaction of N‐aryl(alkyl)sulfonyl‐2‐alkynylanilides with arylboronic acids under oxygen atmosphere afforded enantioenriched 2,3‐disubstituted indoles in high yields and enantioselectivity. The indole ring is constructed de novo in this process and a complexation‐induced chirality transfer is proposed to account for the observed enantioselectivity.  相似文献   

8.
The synthesis of chiral (2R) 2,5‐diaryl‐2,3‐dihydropyrano[2,3‐b]quinolin‐4‐ones, was achieved, at ambient temperature, by the reaction of 3‐acetyl‐4‐aryl‐carbostyril and an aldehyde, in the presence of bismuth triflate–L(?)‐proline complex, formed in situ. The products were obtained in 62–78% yield with high enantioselectivity (72–96% ee). J. Heterocyclic Chem., (2011).  相似文献   

9.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C?H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C?H functionalizations of α,β‐unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.  相似文献   

10.
A phosphite‐mediated [2,3]‐aza‐Wittig rearrangement has been developed for the regio‐ and enantioselective allylic alkylation of six‐membered heteroaromatic compounds (azaarenes). The nucleophilic phosphite adducts of N‐allyl salts undergo a stereoselective base‐mediated aza‐Wittig rearrangement and dissociation of the chiral phosphite for overall C?H functionalization of azaarenes. This method provides efficient access to tertiary and quaternary chiral centers in isoquinoline, quinoline, and pyridine systems, tolerating a broad variety of substituents on both the allyl part and azaarenes. Catalysis with chiral phosphites is also demonstrated with synthetically useful yields and enantioselectivities.  相似文献   

11.
Catalytic asymmetric synthesis of axially chiral o‐iodoanilides and otert‐butylanilides as useful chiral building blocks was achieved by means of binaphthyl‐modified chiral quaternary ammonium‐salt‐catalyzed N‐alkylations under phase‐transfer conditions. The synthetic utility of axially chiral products was demonstrated in various transformations. For example, axially chiral N‐allyl‐o‐iodoanilide was transformed to 3‐methylindoline by means of radical cyclization with high chirality transfer from axial chirality to C‐centered chirality. Furthermore, stereochemical information on axial chirality in otert‐butylanilides could be used as a template to control the stereochemistry of subsequent transformations. The transition‐state structure of the present phase‐transfer reaction was discussed on the basis of the X‐ray crystal structure of ammonium anilide, which was prepared from binaphthyl‐modified chiral ammonium bromide and o‐iodoanilide. The chiral tetraalkylammonium bromide as a phase‐transfer catalyst recognized the steric difference between the ortho substituents on anilide to obtain high enantioselectivity. The size and structural effects of the ortho substituents on anilide were investigated, and a wide variety of axially chiral anilides that possess various functional groups could be synthesized with high enantioselectivities. This method is the only general way to access a variety of axially chiral anilides in a highly enantioselective fashion reported to date.  相似文献   

12.
The first copper(I)‐catalyzed enantioselective borylation of racemic benzyl chlorides has been realized by a quadrant‐by‐quadrant structure modulation of QuinoxP*‐type bisphosphine ligands. This reaction converts racemic mixtures of secondary benzyl chlorides into the corresponding chiral benzylboronates with high enantioselectivity (up to 92 % ee). The results of mechanistic studies suggest the formation of a benzylic radical intermediate. The results of DFT calculations indicate that the optimal bisphosphine‐copper(I) catalyst engages in noncovalent interactions that efficiently recognize the radical intermediate, and leads to high levels of enantioselectivity.  相似文献   

13.
The 1,3‐dipolar cycloaddition reactions of 2‐diazocyclohexane‐1,3‐dione ( 7a ; Table 1) and of alkyl diazopyruvates ( 11a – e ; Table 3) to 2,3‐dihydrofuran and other enol ethers have been investigated in the presence of chiral transition metal catalysts. With RhII catalysts, the cycloadditions were not enantioselective, but those catalyzed by [RuIICl2( 1a )] and [RuIICl2( 1b )] proceeded with enantioselectivities of up to 58% and 74% ee, respectively, when diazopyruvates 11 were used as substrates. The phenyliodonium ylide 7c yielded the adduct 8a in lower yield and poorer selectivity than the corresponding diazo precursor 7a (Table 2) upon decomposition with [Ru(pybox)] catalysts. This suggests that ylide decomposition by RuII catalysts, contrary to that of the corresponding diazo precursors, does not lead to Ru‐carbene complexes as reactive intermediates. Our method represents the first reproducible, enantioselective 1,3‐cycloaddition of these types of substrates.  相似文献   

14.
A simple one‐pot and efficient method is described for the synthesis of pyrimido[5,4‐c]pyridazines 5 and of thiino[2,3‐d] pyrimidines 15 by a domino process involving an aza‐Wittig reaction/heterocyclization. The iminophosphorane 2 reacted with phenylisocyanate, followed by heterocyclization on addition of amines to give the corresponding guanidine intermediates 4 . The guanidine intermediates were cyclized in the presence of catalytic amount of sodium ethoxide to pyrimido[5,4‐c]pyridazines 5 . Similarly, iminophosphorane 12 reacted with phenylisocyanate and amines to give thiino[2,3‐d]pyrimidines 15 in moderate yields. Furthermore, pyridazino[4,3‐d]oxazines 10 and thiino[2,3‐d]oxazines 19 were synthesized by the intremolecular aza‐Wittig reaction of phosphazenes 2 and 12 , respectively, with acid chlorides followed by heterocylization via imidoyl chloride intermediates. J. Heterocyclic Chem., (2012).  相似文献   

15.
The first highly enantioselective, diastereoselective, and regioselective [2,3]‐rearrangement of iodonium ylides has been developed as a general solution to catalytic onium ylide rearrangements. In the presence of a chiral copper catalyst, substituted allylic iodides couple with α‐diazoesters to generate metal‐coordinated iodonium ylides, which undergo [2,3]‐rearrangements with high selectivities (up to >95:5 r.r., up to >95:5 d.r., and up to 97 % ee ). The enantioenriched iodoester products can be converted stereospecifically into a variety of onium ylide rearrangement products, as well as compounds that are not accessible by classical onium ylide rearrangements.  相似文献   

16.
A cyclopropanation/intramolecular rearrangement initiated by the Michael addition of in situ generated ortho‐quinone methides (o‐QMs) has been developed for the enantioselective synthesis of 2‐aryl‐2,3‐dihydrobenzofurans containing two consecutive stereogenic centers, including a quaternary carbon atom. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in excellent yields (up to 95 %) with excellent stereoselectivity (up to >99 ee, up to >20:1 d.r.).  相似文献   

17.
《中国化学》2018,36(6):519-525
A gold(I)‐catalyzed highly diastereo‐ and enantioselective intermolecular cycloaddition of oxime ethers with nitrones under mild conditions was developed, which provides an facile access to optically pure highly substituted pyrrolo[3,4‐d][1,2]oxazines. The salient features of this reaction include general substrate scope, high efficiency, high enantioselectivity, readily available starting materials, and the use of commercially available ligand.  相似文献   

18.
An efficient procedure for the stereocontrolled construction of 2H‐thiopyrano[2,3‐b]quinoline scaffolds has been developed, starting from simple compounds. The domino Michael/aldol reactions between 2‐mercaptobenzaldehydes and enals, promoted by chiral diphenylprolinol TMS ether, proceed with excellent chemo‐ and enantioselectivity to give the corresponding synthetically useful and pharmaceutically valuable 2H‐thiopyrano[2,3‐b]quinolines in high yields with 90–99 % ee.  相似文献   

19.
An efficient enantioselective synthesis of 3‐acetoxy transβ‐lactams 7a and 7b via [2+2] cycloaddition reactions of imines 4a and 4b , derived from a polycyclic aromatic amine and bicyclic chiral acid obtained from (+)‐car‐3‐ene, is described. The cycloaddition was found to be highly enantioselective, producing only trans‐(3R,4R)‐N‐azetidin‐2‐one in very good yields. This is the first report of the synthesis of enantiomerically pure transβ‐lactams 7a and 7b with a polycyclic aromatic substituent at N(1) of the azetidin ring.  相似文献   

20.
Regio‐ and enantioselective [4+2] annulation between β,γ‐unsaturated α‐keto esters and non‐activated allenes was achieved by using a chiral cationic indium(III)/phosphate catalyst. The reaction affords the corresponding C3‐selective dihydropyrans in good yields and with high enantioselectivity (up to 99 % ee ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号