首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.  相似文献   

2.
A large family of dysprosium–scandium (Dy‐Sc) mixed‐metal nitride clusterfullerenes (MMNCFs), DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) have been successfully synthesized and isolated. Among these, the C70 and C82‐based MMNCFs are two new cages that have never been isolated for MMNCFs. Synthesis of DyxSc3?xN@C2n was accomplished by the “selective organic solid” route using guanidinium thiocyanate as the nitrogen source, and their isolation was fulfilled by recycling HPLC. UV/Vis‐NIR spectroscopic study indicates that almost all DyxSc3?xN@C2n MMNCFs are kinetically stable fullerenes with optical band gaps beyond 1 eV. This feature is distinctly different to their counterparts Dy3N@C2n (78≤2n≤88), whose for optical band‐gaps are below 1 eV for relatively large cages such as C84 and C86. An FTIR spectroscopic study in combination with DFT calculations enables reasonable assignments of the cage isomeric structures of all isolated DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) MMNCFs. The carbon cage size distribution of DyxSc3?xN@C2n (2n=68, 70, 76–86) is compared to the reported Dy3N@C2n (78≤2n≤8) homogeneous NCF and DyxSc3?xN@C2n (78≤2n≤88) MMNCF families, revealing that the medium‐sized Dy metal plays a crucial role on the expanded cage size distribution of MMNCFs. As a result, DyxSc3?xN@C2n MMNCFs are the largest MMNCF family reported to date.  相似文献   

3.
To provide theoretical insight into the structures and properties of Sc3N@C80, which has been isolated in high yield and purity as a new stable endohedral metallofullerene, density functional calculations are carried out for the Sc3?nLanN@C80 (n=0–3) series. Because of electron transfer from Sc3N to C80, the electronic structure of Sc3N@C80 is formally described as (Sc3N)6+C$_{80}^{6-}$. The encapsulated Sc3N cluster takes a planar structure with long Sc–Sc distances and is highly stabilized inside the Ih cage of C80, which rotates rapidly. As the number of La atoms increases, the Sc3?nLanN cluster is forced to maintain a pyramidal structure in Sc3?nLanN@C80. In addition, the C80 cage takes an open‐shell electronic structure due to an increase in the number of electrons transferring from Sc3?nLanN. These make the endohedral structure less stable and more reactive. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1353–1358, 2001  相似文献   

4.
The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels–Alder cycloaddition between s‐cis‐1,3‐butadiene and practically all X@Ih‐C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow Ih‐C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of Ih‐C80‐based EMFs.  相似文献   

5.
The recent progress of the structural studies of endohedral metallofullerenes by the synchrotron radiation (SR) powder diffraction utilizing the maximum entropy method (MEM) is reviewed. Results of the endohedral metallofullerenes (Y@C82, La@C82, Sc@C82, Sc2@C84, Sc3@C82, Sc2@C66, La2@C80 and Sc2C2@C84) are given. The precise MEM charge densities of metallofullerenes presents the direct image of endohedral nature of metallofullerenes indicating the charge transfer from metal atoms to carbon cage, which governs the stability of the unique endohedral structures. The MEM/Rietveld method and SR powder method using imaging plate (IP), which are the crucial methods for data analysis and measurement in order to determine structure of fulleride, are also mentioned in some detail.  相似文献   

6.
Endohedral metallofullerenes (EMFs), namely fullerenes with metallic species encapsulated inside, represent an ideal platform to investigate metal–metal or metal–carbon interactions at the sub-nanometer scale by means of single-crystal X-ray diffraction (XRD) crystallography. Herein, recent progress in the identification of new structures and unprecedented properties are discussed according to the categories of monometallofullerenes, dimetallofullerenes, carbide clusterfullerenes, and nitride clusterfullerenes. In particular, the dimerization and the cage-isomer dependent oxidation state of the inner metal atom are summarized in terms of pristine monometallofullerenes. Metal–metal bonds involving lanthanide–lanthanides or actinide–actinides are discussed based on both experimental and theoretical studies. The cluster–cage matching and/or mutual selections, as well as the rarely seen M=C double bonds, are discovered in M2C2@C2n, U2C@C80, M2TiC@C80, and Ti3C3@C80. Subsequently, the geometries of different M3N clusters in various cages are discussed, revealing size-matching between the internal M3N cluster and the outer cage induced by the planarity of the cluster. Finally, an outlook regarding the future developments of the molecular structures and applications of EMFs is presented.  相似文献   

7.
A systematic density functional theory investigation has been carried out to explore the possible structures of Sc2C80 at the BMK/6‐31G(d) level. The results clearly show that Sc2@C80Ih, Sc2@C80D5h, and Sc2C2@C78C2v can be identified as three isomers of Sc2C80 metallofullerene with the lowest energy. Frontier molecular orbital analysis indicates that the two Sc2@C80 isomers have a charge state as (Sc3+)2@C806?and the Sc2C2@C78 has a charge state of (Sc3+)2C22?@C784?. Moreover, the metal‐cage covalent interactions have been studied to reveal the dynamics of endohedral moiety. The vertical electron affinity, vertical ionization potential, infrared spectra and 13C nuclear magnetic resonance spectra have been also computed to further disclose the molecular structures and properties.  相似文献   

8.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

9.
Based on the calculated findings that the sizes of encaged clusters determine the structures and the stability of C80-based trimetallic nitride fullerenes (TNFs), more extensive density functional theory calculations were performed on M3N@C68, M3N@C78 and M3N@C80 (M=Sc, Y and La). The calculated results demonstrated that the structures and stability undergo a transition with the increasing of the sizes of the cages and clusters. Sc3N is planar inside the three considered cages, Y3N is slightly pyramidal inside C68-6140 and C78-5 and planar inside Ih C80-7, however, La3N is pyramidal inside all the three cages. Those cages with pyramidal clusters inside deformed considerably, compared with their parent cages. In these cases, the bonding of metallic atoms toward the cages does not play an important role, and the encaged cluster tends to be located inside the cages with the largest M-M and M-C distances so that the strain energy can be released mostly. These calculations revealed the size effect of fullerene cages and encaged clusters, and can explain the position priority of M3N inside fullerene cages and the differences in yield of M3N@C2n . Supported by the Southwest University, China (Grant No. SWNUB2005002)  相似文献   

10.
The reactions of [(μ‐H)3Re3(CO)11(NCMe)] with Sc2@C82C3v(8), Sc2C2@C80C2v(5), Sc2O@C82Cs(6), C86C2(17), and C86Cs(16) have been carried out to produce face‐capping cluster complexes. The Re3 triangles are found to bind to the sumanene‐type hexagons on the fullerene surface regiospecifically. In contrast, Sc3N@C78D3h(5) and Sc3N@C80Ih show no reactivity toward [(μ‐H)3Re3(CO)11(NCMe)], probably due to electronic and steric factors. These complexes can be easily purified by using HPLC. Carbonylation of each complex releases the corresponding higher fullerene or endohedral metallofullerene in pure form. Remarkably, the C86C2(17) and C86Cs(16) isomers were successively separated through Re3 cluster complexation/decomplexation. This unique bonding feature may provide an attractive general strategy to purify as yet unresolved fullerene mixtures.  相似文献   

11.
The synthesis, isolation and spectroscopic characterization of holmium‐based mixed metal nitride clusterfullerenes HoxSc3?xN@C80 (x=1, 2) are reported. Two isomers of HoxSc3?xN@C80 (x=1, 2) were synthesized by the reactive gas atmosphere method and isolated by multistep recycling HPLC. The isomeric structures of HoxSc3?xN@C80 (x=1, 2) were characterized by laser‐desorption time‐of‐flight (LD‐TOF) mass spectrometry and UV/Vis/NIR, FTIR and Raman spectroscopy. A comparative study of MxSc3?xN@C80 (M=Gd, Dy, Lu, Ho) demonstrates the dependence of their electronic and vibrational properties on the encaged metal. Despite the distinct perturbation induced by 4f10 electrons, we report the first paramagnetic 13C NMR study on HoxSc3?xN@C80 (I; x=1, 2) and confirm Ih‐symmetric cage structure. A 45Sc NMR study on HoSc2N@C80 (I, II) revealed a temperature‐dependent chemical shift in the temperature range of 268–308 K.  相似文献   

12.
Geometrical structures of three investigated molecules Sc3N@C80, Sc3N@C80‐Fc, and C60‐Fc were optimized by density functional theory (DFT) at the B3LYP/6‐31G* level. Then the time‐dependent DFT was employed to investigate the excited states of these molecules. After exohedral functionalization by ferrocene (Fc‐) group as the electron donor or replacing C60 with Sc3N@C80 as the electron acceptor, the wavelengths of the first one‐photon absorption peak and the strongest two‐photon absorption (2PA) and three‐photon absorption (3PA) peaks shift red. The corresponding cross sections of Sc3N@C80‐Fc in the 2PA and 3PA processes increase as compared with those of Sc3N@C80, which originate from the contributions of charge transfers from Fc‐ group to C80 cage and simultaneously the transfers from the C80 cage to the encapsulated Sc3N cluster. When compared with C60‐Fc, the 2PA and 3PA cross sections of Sc3N@C80‐Fc decrease, which may result from the more negative charge surface of C80 cage in Sc3N@C80‐Fc molecule which blocks the charge transfers from Fc‐ moiety to the C80 cage in the excitation processes by compared with C60‐Fc. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

13.
The structural determination of endohedral metallofullerenes has attracted special attention in disclosing the formation mechanism and developing new routes to bulk production. Recent advances in the theoretical and experimental studies are summarized with representative mono- and dimetallofullerenes such as M@C82 (M=Ca, Sc, Y, and La), Sc2@C84, and La2@C80. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 232–239, 1998  相似文献   

14.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

15.
Geometrical structures of the investigated endohedral metallofullerenes Sc3N@C2n (2n = 68, 70, 78, and 80) were optimized at the B3LYP/6‐31G* level. The analyses of electronic structures display that the contribution of fullerene cage to the lowest unoccupied molecular orbital decreases as the cage size increases. Based on the optimized structures, the time‐dependent density functional theory combined with the sum‐over‐states method was used to investigate their nonlinear optical properties. Calculated third‐order polarizabilities γ and two‐photon absorption (TPA) cross‐section δ do not present the monotone variation with the size of fullerene cage, with largest γ of 0.48 × 10?34 esu for Sc3N@C78 in static state, and largest δ of 12.374 GM for Sc3N@C70 in the wavelength of 902.5 nm. However, the obtained TPA resonant peaks shift red with the size of fullerene cage. By analyzing the electronic origin of the third‐order optical properties, it is found that the charge transfers from the fullerene cage to the encapsulated Sc3N cluster make important contributions to the studied properties. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Rare‐earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non‐Group‐3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an Ih‐C80 cage. Non‐Group‐3 transition‐metal‐containing endohedral fullerenes based on a C80 cage with D5h symmetry, VxSc3?xN@D5h‐C80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc2N@D5h‐C80 was unambiguously determined by X‐ray crystallography. According to a comparative study with the reported Ti‐ and V‐containing clusterfullerenes based on a Ih‐C80 cage and the analogous D5h‐C80‐based metal nitride clusterfullerenes containing rare‐earth metals only, the decisive role of the non‐Group‐3 transition metal on the formation of the corresponding D5h‐C80‐based clusterfullerenes is unraveled.  相似文献   

17.
We present a first-principles study on the geometric, vibrational and electronic properties of a novel Y-based non-scandium mixed-metal nitride clusterfullerene (TiY2N@C80). Theoretical results indicate that the fundamental electronic properties of TiY2N@C80 are similar to that of TiSc2N@C80, but dramatically different from that of Sc3N@C80 and Y3N@C80 molecules. We find that the magnetism of TiY2N@C80 is quenched by carrier doping. The rotation energy barrier of the TiY2N cluster in C80 cage was obviously increased by exohedral chemical modification with pyrrolidine monoadduct.  相似文献   

18.
Supramolecular nanocapsule 1 ?(BArF)8 is able to sequentially and selectively entrap recently discovered U2@C80 and unprecedented Sc2CU@C80, simply by soaking crystals of 1 ?(BArF)8 in a toluene solution of arc‐produced soot. These species, selectively and stepwise absorbed by 1 ?(BArF)8, are easily released, obtaining highly pure fractions of U2@C80 and Sc2CU@C80 in one step. Sc2CU@C80 represents the first example of a mixed metal actinide‐based endohedral metallofullerene (EMF). Remarkably, the host–guest studies revealed that 1 ?(BArF)8 is able to discriminate EMFs with the same carbon cage but with different encapsulated cluster and computational studies provide support for these observations.  相似文献   

19.
Encapsulating one to three metal atoms or a metallic cluster inside fullerene cages affords endohedral metallofullerenes (EMFs) classified as mono‐, di‐, tri‐, and cluster‐EMFs, respectively. Although the coexistence of various EMF species in soot is common for rare‐earth metals, we herein report that europium tends to prefer the formation of mono‐EMFs. Mass spectroscopy reveals that mono‐EMFs (Eu@C2n) prevail in the Eu‐containing soot. Theoretical calculations demonstrate that the encapsulation energy of the endohedral metal accounts for the selective formation of mono‐EMFs and rationalize similar observations for EMFs containing other metals like Ca, Sr, Ba, or Yb. Consistently, all isolated Eu‐EMFs are mono‐EMFs, including Eu@D3h(1)‐C74, Eu@C2v(19138)‐C76, Eu@C2v(3)‐C78, Eu@C2v(3)‐C80, and Eu@D3d(19)‐C84, which are identified by crystallography. Remarkably, Eu@C2v(19138)‐C76 represents the first Eu‐containing EMF with a cage that violates the isolated‐pentagon‐rule, and Eu@C2v(3)‐C78 is the first C78‐based EMF stabilized by merely one metal atom.  相似文献   

20.
The thermodynamic and dynamic stabilities of Sc3X@C80 (X = C, N, and O) are explored via density functional theory combined with statistical thermodynamic analysis and ab initio molecular dynamics. It is the first time to comprehensively consider the effect of nonmetal atoms on trimetallic endohedral clusterfullerenes. Relative to Sc3X@Ih (31924)-C80 (X = N and O) with general six-electron transfer, an intriguing electronic structure of unexplored Sc3C@D5h (31923)-C80 with thermodynamic and dynamic stabilities is clearly disclosed. Natural bond orbitals and charge decomposition analysis simultaneously suggest that one unpaired electron appears on the cage for neutral Sc3C@D5h (31923)-C80, which could be prospectively stabilized by effective exohedral derivatization and ionization in the future. Moreover, isoelectronic endohedral clusterfullerenes, (Sc3C@C80), Sc3N@C80, and (Sc3O@C80)+, are also uniquely taken into account. The geometries, electronic structures, reactivities, and reactive sites of isoelectronic species are examined, and it turns out that all the three isoelectronic species would rather electrophilic than nucleophilic reactions. © 2019 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号