首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Energetic compounds that incorporate multiple nitrogen‐rich heterocycles are of great interest for high‐density energetic materials. A facile synthetic strategy to combine an oxy bridge and furazan groups, as well as tetrazole‐ols, into a molecule ( 5 ) was found. Some energetic salts based on 5 were prepared by neutralization. All of the compounds were fully characterized. Additionally, the structure of 7 has been elucidated by single‐crystal XRD analysis. Physicochemical and energetic properties were also studied; these show that these newly designed energetic salts exhibit good thermal stabilities. Hydroxylammonium salt ( 6 ) has a detonation performance and sensitivities comparable with those of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

3.
Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1′‐dinitramino‐5,5′‐bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X‐ray diffraction, EA, NMR and vibrational spectroscopy) and physico‐chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol?1) and density (2.11 g cm?3), impressive values for its detonation velocity (8330 m s?1) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.  相似文献   

4.
5.
A family of highly emissive dithiazolo[5,4‐b:4′,5′‐d]phospholes has been designed and synthesized. The structures of two trivalent P species, as well as their corresponding P oxides, have been confirmed by X‐ray crystallography. The parent dithiazolo[5,4‐b:4′,5′‐d]phosphole oxide exhibits strong blue photoluminescence at λem=442 nm, with an excellent quantum yield efficiency of ?PL=0.81. The photophysical properties of these compounds can be easily tuned by extension of the conjugation and modification of the phosphorus center. Compared with the established dithieno[3,2‐b:2′,3′‐d]phosphole system, the incorporation of electronegative nitrogen atoms leads to significantly lowered frontier orbital energy levels, as validated by both electrochemistry and theoretical calculations, thus suggesting that the dithiazolo[5,4‐b:4′,5′‐d]phospholes are valuable, air‐stable, n‐type conjugated materials. These new building blocks have been further applied to the construction of an extended oligomer with fluorene. Extension of the dithiazolophosphole core with triazole units through click reactions also provides a suitable N,N‐chelating moiety for metal binding and a representative molecular species was successfully used as a selective colorimetric and fluorescent sensor for CuII ions.  相似文献   

6.
7.
The bidentate P,N hybrid ligand 1 allows access for the first time to novel cationic phosphinine‐based RhIII and IrIII complexes, broadening significantly the scope of low‐coordinate aromatic phosphorus heterocycles for potential applications. The coordination chemistry of 1 towards RhIII and IrIII was investigated and compared with the analogous 2,2′‐bipyridine derivative, 2‐(2′‐pyridyl)‐4,6‐diphenylpyridine ( 2 ), which showed significant differences. The molecular structures of [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl (Cp*=pentamethylcyclopentadienyl) were determined by means of X‐ray diffraction and confirm the mononuclear nature of the λ3‐phosphinine–RhIII and IrIII complexes. In contrast, a different reactivity and coordination behavior was found for the nitrogen analogue 2 , especially towards RhIII as a bimetallic ion pair [RhCl(Cp*)( 2 )]+[RhCl3(Cp*)]? is formed rather than a mononuclear coordination compound. [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl react with water regio‐ and diastereoselectively at the external P?C double bond, leading exclusively to the anti‐addition products [MCl(Cp*)( 1 H ? OH)]Cl as confirmed by X‐ray crystal‐structure determination.  相似文献   

8.
A boost from the branches : Incorporation of the dithieno[3,2‐b:2′,3′‐d]phosphole system as a core in oligo(phenylenevinylene) dendrimers (an example is shown here) provides materials that exhibit energy‐transfer features relaying incoming photons from the dendrons towards the core, which in turn shows enhanced emission intensity. The optical properties and self‐assembly features of the dendrimers can be impacted by the terminal groups (‐H, ‐CF3, or ‐NPh2) employed.

  相似文献   


9.
A series of perfluorophenyl‐substituted dithienophosphole derivates has been synthesized. Investigation of their photophysical properties, as well as their organization in the solid state reveals that these properties can be manipulated via introduction of bromine substituents in 2,6‐position of the dithienphosphole scaffold, as well as the complexation of the phosphorus center with an electron rich gold(I) fragment. The strongly electron‐withdrawing character of the perfluorophenyl‐group surmounts the effect of the oxidation of the phosphorus center with respect to photophysics, leading to leading to optoelectronic features similar to those of the trivalent phosphole species. The trivalent phosphole species. The solid‐state organization of the members of this perfluorinated dithienophosphole family, on the other hand, strongly depends on the heteroatoms present within the system, as close intermolecular interactions can be observed between varieties of different atoms (Au‐Au, Br‐Br, Br‐O, Br‐C, F‐C, O‐S), next to regular C‐C π‐stacking interactions.  相似文献   

10.
《Chemphyschem》2003,4(12):1308-1315
The low‐energy regions of the singlet→singlet, singlet→triplet, and triplet→triplet electronic spectra of 2,2′‐bithiophene are studied using multiconfigurational second‐order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states.  相似文献   

11.
12.
As a powerful synthon, N ′‐(2‐alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N‐heterocycles. Since N ′‐(2‐alkynylbenzylidene)hydrazides can easily undergo intramolecular 6‐endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium‐2‐yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen‐containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H‐pyrazolo[5,1‐a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium‐2‐yl amide followed by aromatization also produced H‐pyrazolo[5,1‐a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N ′‐(2‐alkynylbenzylidene)hydrazides. A tandem 6‐endo cyclization and [3 + 3] cycloaddition of cyclopropane‐1,1‐dicarboxylates with N ′‐(2‐alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC‐PTP, HCT‐116, and PTP1B.

  相似文献   


13.
The title compound, C40H16O4 or [C10H4O]4, is a planar tetrameric cyclooligomer which crystallizes in the monoclinic space group P21/n. The compound is located on an inversion center with the asymmetric unit consisting of half of the molecule. The compound displays an interesting packing structure, where the cyclooligomer displays both layered packing with respect to nearest neighbors and a rotation of adjacent planar rings that results in additional interactions. The geometric parameters of the compound agree well with those of comparable cyclooligomers, while the packing reveals some similarities and differences.  相似文献   

14.
A series of thirteen luminescent tetrahedral borate complexes based on the 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) core is presented. Their synthesis includes the incorporation of an ethynyl fragment by Sonogashira cross‐coupling reaction, with the goal of extending the conjugation and consequently redshifting their emission wavelength. Different regioisomers, substituted in the 3‐, 4‐, or 5‐position of the phenolate side of the HBO core, were studied in order to compare their photophysical properties. The complexes were characterized by X‐ray diffraction and NMR, UV/Vis, and emission spectroscopy in solution and in the solid state. In all cases, complexation to boron leads to a donor–acceptor character that impacts their photophysical properties. Complexes with a 3‐ or 5‐substituted fragment display mild to pronounced internal charge transfer (ICT), a feature strengthened by the presence of p‐dibutylaminophenylacetylene in the molecular structure, protonation of the nitrogen atom of which leads to a significant blueshift and an increase in quantum yield. On the contrary, when the ethynyl module is grafted on the 4‐position, narrow, structured, symmetrical absorption/emission bands are observed. Moreover, the fact that protonation has little effect on the emission maximum wavelength reveals singlet excited‐state decay. Solid‐state emission properties reveal a redshift compared to solution, explained by tight packing of the π‐conjugated systems and the high planarity of the dyes. Subsequent connection of these complexes to other photoactive subunits (BODIPY, Boranil) provides dyads in which efficient cascade energy transfer is observed.  相似文献   

15.
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.  相似文献   

16.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

17.
The title compound, 3‐[4‐(di­methyl­amino)­phenyl]‐1‐(2‐hydroxy­phenyl)­prop‐2‐en‐1‐one, C17H17NO2, is a chalcone derivative substituted by 2′‐hydroxyl and 4′′‐di­methyl­amino groups. The crystal structure indicates that the aniline and hydroxy­phenyl groups are nearly coplanar, with a dihedral angle of 10.32 (16)° between their phenyl rings. The molecular planarity of this substituted chalcone is strongly affected by the 2′‐hydroxyl group.  相似文献   

18.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

19.
The title compound, C58H64S8, has been prepared by Pd‐catalysed direct C—H arylation of tetrathienonaphthalene (TTN) with 5‐hexyl‐2‐iodothiophene and recrystallized by slow evaporation from dichloromethane. The crystal structure shows a completely planar geometry of the TTN core, crystallizing in the monoclinic space group P21/c. The structure consists of slipped π‐stacks and the interfacial distance between the mean planes of the TTN cores is 3.456 (5) Å, which is slightly larger than that of the comparable derivative of tetrathienoanthracene (TTA) with 2‐hexylthiophene groups. The packing in the two structures is greatly influenced by both the aromatic core of the structure and the alkyl side chains.  相似文献   

20.
New phosphorus‐containing, five‐membered P,P,P and P,N,P heterocycles were synthesized and fully characterized. The P,P,P heterocycles, 1,2,3‐triphospholanes, can be synthesized by two different facile pathways, whereas the P,N,P compound, a 1‐aza‐2,5‐diphospholane, can only be obtained with silylamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号