首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lavender layers : A poly(p‐phenylene) anionic derivate and exfoliated Mg‐Al layered double hydroxide monolayers were assembled into ultrathin films with well‐defined blue fluorescence (see picture; the numbers indicate the number of bilayers), long‐range order, and high photostability. These films work as multiple quantum‐well structures for valence electrons.

  相似文献   


2.
Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.

  相似文献   


3.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


4.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

5.
Summary: Single polyelectrolyte component microcapsules and multilayers, exemplified by poly(allylamine hydrochloride) (PAH), have been prepared using a method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly. The GA cross‐linking of the adsorbed PAH results in surfaces covered by reactive aldehyde groups, which can then react with PAH to result in another layer of covalently linked PAH. The repeated assembly of single polyelectrolyte in an LbL manner can be thus achieved. The PAH multilayers can grow linearly along with the layer number, and their thickness can be controlled at the nanometer scale, as verified by UV‐vis absorption spectrometry and ellipsometry. Single polyelectrolyte microcapsules are obtained after removal of the template cores at low pH. The morphology and integrity are confirmed by scanning force microscopy and confocal laser scanning microscopy.

Schematic illustration of the preparation of a single polyelectrolyte component microcapsule by GA‐mediated covalent LbL assembly.  相似文献   


6.
7.
Electrochemical oxidation of a phospholipid, phosphatidylcholine (PC), was accomplished at a 4‐aminothiophenol (ATP)‐modified gold electrode coated with a layer‐by‐layer assembly of an electrochemical catalyst (dirhodium phosphomolybdic acid), a trapping agent for PC (a cyclophane, CP, derivative, 1,4‐xylylene‐1,4‐phenylene‐diacetate), and a spacer (generation‐4 polyamidoamine dendrimer, PAMAM). The layer‐by‐layer assembly process and the trapping of PC was verified by quartz crystal microbalance measurements; Au|ATP|CP|PAMAM|CP trapped (1.5±0.4)×10?9 mol cm?2 of PC. The electrocatalytic oxidation of PC yielded a current that varied linearly with concentration over the range 1–50 μM; the R2 value was 0.996.  相似文献   

8.
The assembly of alternating DNA and positively charged poly‐(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer‐by‐layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly‐(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real‐time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (kobs = (1.28 ± 0.08) × 10?2s?1).  相似文献   

9.
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles.  相似文献   

10.
11.
Films formed by oxidation of dopamine are of interest for functionalisation of solid–liquid interfaces owing to their versatility. However, the ability to modulate the properties of such films, for example, permeability to ionic species and the absorption coefficient, is urgently needed. Indeed, melanin films produced by oxidation of dopamine absorb strongly over the whole UV/Vis part of the electromagnetic spectrum and are impermeable to anions even for a film thickness as low as a few nanometers. Herein we combine oxidation of dopamine to produce a solution containing dopamine–melanin particles and their alternating deposition with poly(diallyldimethylammonium chloride) to produce films which have nearly the same morphology as pure dopamine–melanin films but are less compact, more transparent and more permeable to ferrocyanide anions.  相似文献   

12.
Electrostatic assembly of one species can be realized using gelatin as a polyampholyte. Under suitable conditions where the electrostatic attraction and repulsion were both significant and in balance, linear growth of multilayers driven by electrostatic interactions was sustained over many successive assembly steps, and the maximum amount of adsorption of each layer was reached when the solution pH was around the isoelectric point. The rearrangement of the adsorbed chains after drying was confirmed by contact angle analysis. In addition with only one species involved, the assembled thin films should be chemically uniform rather than layered. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1252–1257, 2008  相似文献   

13.
14.
《中国化学》2018,36(1):51-54
Antireflection surfaces and coatings have attracted considerable interests because they can maximize light transmittance of the substrates. In this work, zeolite antireflective (ZAR) coatings are prepared via layer‐by‐layer (LBL) assembly of MFI ‐type zeolite silicalite‐1 and polyelectrolyte. A micro‐ and macroporous hierarchical structure was obtained which contributes to the antireflective property of the zeolite coatings. The light transmittance of the coating on quartz can achieve as high as 99.3% at 650 nm. Furthermore, a superhydrophobic ZAR coating can be obtained by chemical modification with 1H,1H,2H,2H–perfluorooctyl‐triethoxysilane. This work demonstrates that zeolites are excellent candidates as high transparent superhydrophobic coatings.  相似文献   

15.
Two polysaccharides hydroxyethyl cellulose ethoxylate (HECE) and hyaluronic acid (HA) were assembled into {HECE/HA}n layer‐by‐layer films on electrodes. The films were then immersed in myoglobin (Mb) solutions to load Mb into the films. The Mb‐loaded films showed a nearly reversible cyclic voltammetric (CV) peak pair at ?0.34 V vs. SCE in pH 7.0 buffers. The effect of ionic strength in Mb loading solutions and CV testing solutions on the CV response of the films was investigated. The direct electrochemistry of Mb loaded in the films could also be used to electrocatalyze the reduction of oxygen and H2O2 in solution.  相似文献   

16.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

17.
Free‐standing layer‐by‐layer (LbL) assembled thin films have recently found utility in a broad range of applications. Previously reported free‐standing LbL films have generally required covalent modifications to improve aqueous stability and render these films suitable for biomedical applications. Here, we engineered chitosan and poly(acrylic acid) containing polyelectrolyte multilayer films, which are readily detached from hydrophilic silicon in aqueous conditions. These films demonstrate remarkable stability over 28 days in simulated in vivo conditions (pH 7.4, phosphate buffered saline at 37 °C) without the incorporation of any covalent crosslinking modifications. These films exhibit moduli (27–420 kPa) resembling that of many biological tissues including tendon, show high visible light transmittance of greater than 50%, and prevent fibronectin adsorption. The properties of this new detachable LbL film architecture indicate its promise for use in a variety of applications, particularly in medicine and biotechnology. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 127–131  相似文献   

18.
19.
In the current work, we present the successful functionalization and stabilization of P‐25 TiO2 nanoparticles by means of N1,N7‐bis(3‐(4‐tert‐butyl‐pyridium‐methyl)phenyl)‐4‐(3‐(3‐(4‐tert‐butyl‐pyridinium‐methyl)phenylamino)‐3‐oxopropyl)‐4‐(3,4‐dihydroxybenzamido)heptanediamide tribromide ( 1 ). The design of the latter is aimed at nanoparticle functionalization and stabilization with organic building blocks. On one hand, 1 features a catechol anchor to enable its covalent grafting onto the TiO2 surface, and on the other hand, positively charged pyridine groups at its periphery to prevent TiO2 agglomeration through electrostatic repulsion. The success of functionalization and stabilization was corroborated by thermogravimetric analysis, dynamic light‐scattering, and zeta potential measurements. As a complement to this, the formation of layer‐by‐layer assemblies, which are governed by electrostatic interactions, by alternate deposition of functionalized TiO2 nanoparticles and two negatively charged porphyrin derivatives, that is, 5,10,15,20‐(phenoxyacetic acid)‐porphyrin ( 2 ) and 5,10,15,20‐(4‐(2‐ethoxycarbonyl)‐4‐(2‐phenoxyacetamido)heptanedioic acid)‐porphyrin ( 3 ), is documented. To this end, the layer‐by‐layer deposition is monitored by UV/Vis spectroscopy, scanning electron microscopy, ellipsometry, and profilometry techniques. The resulting assemblies are utilized for the construction and testing of novel solar cells. From stable and repeatable photocurrents generated during several “on‐off” cycles of illumination, we derive monochromatic incident photo‐to‐current conversion efficiencies of around 3 %.  相似文献   

20.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号