首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chitosan (CS)‐tin oxide (SnO2) nanobiocomposite film has been deposited onto an indium‐tin‐oxide glass plate to immobilize cholesterol oxidase (ChOx) for cholesterol detection. The value of the Michaelis–Menten constant (Km) obtained as 3.8 mM for ChOx/CS‐SnO2/ITO is lower (8 mM) than that of a ChOx/CS/ITO bioelectrode revealing enhancement in affinity and/or activity of ChOx towards cholesterol and also revealing strong binding of ChOx onto CS‐SnO2/ITO electrode. This ChOx/CS‐SnO2/ITO cholesterol sensor retains 95% of enzyme activity after 4–6 weeks at 4 °C with response time of 5 s, sensitivity of 34.7 μA/mg dL?1 cm2 and detection limit of 5 mg/dL.  相似文献   

2.
A nanostructured iron oxide (NanoFe3O4, particle size ca. 25 nm and roughness ca. 21 nm) film deposited onto a hydrolyzed indium‐tin‐oxide (ITO) coated glass plate has been used to immobilize cholesterol oxidase (ChOx) to fabricate an impedimetric cholesterol sensor. Electrochemical studies reveal that surface charged Fe3O4 nanoparticles provide better conformation for ChOx loading resulting in enhanced electron transfer between ChOx and the electrode. Impedimetric response studies of the ChOx/NanoFe3O4/ITO bioelectrode exhibit improved linearity (2.5–400 mg/dL), low detection limit (0.25 mg/dL), fast response time (25 s), high sensitivity (86 Ω/mg dL?1/cm?2) and a low value of the Michaelis‐Menten constant (Km, 0.8 mg/dL) with a regression coefficient of 0.997.  相似文献   

3.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

4.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

5.
Cholesterol oxidase (ChOx) has been covalently linked to Langmuir-Blodgett (LB) monolayers of polyaniline (PANI)-stearic acid (SA) prepared onto indium-tin-oxide (ITO) coated glass plates via glutaraldehyde (Glu) chemistry. These ChOx/Glu/PANI-SA LB film/ITO electrodes have been characterized by FT-IR, cyclic voltammetry, and scanning electron microscopy, respectively. The results of response measurements carried out on these bioelectrodes using linear sweep voltammetry (LSV) reveal linearity from 25 to 400 mg/dL of cholesterol concentration with sensitivity of 88.9 nA mg(-1) dL. The linear regression analysis of bioelectrode reveals standard deviation and correlation coefficient of 0.737 microA and 0.9988, respectively. The low value of the Michaelis-Menten constant of these bioelectrodes obtained as 1.21 mM for the immobilized enzyme indicates increased interaction between ChOx and cholesterol in the PANI-SA LB film.  相似文献   

6.
New amperometric cholesterol oxidase (ChOx) based enzyme biosensors for cholesterol have been developed. The enzyme was immobilised with and without glutaraldehyde cross‐linking on top of carbon film electrodes modified with redox mediators. Mediators tested were: poly(neutral red) (PNR), Prussian blue and cobalt hexacyanoferrates. Amperometric detection of cholesterol showed that PNR/ChOx modified electrodes exhibited the best characteristics; under optimised conditions cholesterol was determined at ?0.4 V vs. SCE with a detection limit of 1.9 µM. The biosensors showed good reproducibility and stability and only a small influence from potential interferents in food. Analyses of cholesterol in egg yolk were successfully performed.  相似文献   

7.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

8.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   

9.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

10.
Direct electrochemistry of cholesterol oxidase (ChOx) immobilized on the conductive poly‐3′,4′‐diamine‐2,2′,5′,2″‐terthiophene (PDATT) was achieved and used to create a cholesterol biosensor. A well‐defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH2 of ChOx, and the rate constant (ks) was determined to be 0.75 s?1. Glutathione (GSH) covalently bonded with PDATT was used as a matrix for conjugating AuNPs, ChOx, and MP, simultaneously. MP co‐immobilized with ChOx on the AuNPs‐GSH/PDATT exhibited an excellent amperometric response to cholesterol. The dynamic range was from 10 to 130 μM with a detection limit of 0.3±0.04 μM.  相似文献   

11.
Octadecanethiol (ODT) self-assembled monolayer (SAM) prepared onto gold-coated glass plate has been modified by using nitrene reaction of 1-fluoro-2-nitro-4-azidobenzene (FNAB) that further covalently binds to cholesterol oxidase (ChOx) via thermal reaction. FNAB acts as a bridge (cross-linker) between SAM and ChOx. The ChOx/FNAB/ODT/Au electrode thus fabricated has been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical techniques and X-ray photoelectron spectroscopy (XPS) technique, respectively. This ChOx/FNAB/ODT/Au bioelectrode has been utilized for estimation of cholesterol in solution using surface plasmon resonance (SPR) technique. This SPR based cholesterol biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with lower detection limit of 50 mg/dl and shelf life of about 2 months when stored at 4 °C.  相似文献   

12.
Fabrication of an amperometric cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto conducting polypyrrole (PPY) films using electrochemical entrapment technique is described. Electrochemical polymerization was carried out using a two-electrode cell configuration at 0.8 V. Characterization of resulting amperometric biosensor for the estimation of cholesterol has been experimentally determined in terms of linear response range, optimum pH, applied potential, temperature, and shelf-life. These PPY/ChEt/ChOx electrodes can be used for cholesterol ester estimation from 1 to 8 mM and have shelf-life of about 4 weeks at 4 °C during which about 15 estimations of cholesterol ester could be made. The sensitivity of PPY/ChEt/ChOx electrode has been found to be 0.15 μA/mM and the apparent Km value for this electrode is 9.8 mM. Conductivity of the polymer films found to be about 3×10−3 S/cm.  相似文献   

13.
Cholesterol oxidase (ChOx) has been immobilized onto conducting poly[2-methoxy,5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)/stearic acid (SA) Langmuir-Blodgett film transferred onto octadecanethiol (ODT) modified gold plate. The ChOx/MEH-PPV/SA LB film bioelectrode exhibits has been characterized by FT-IR, contact angle, and atomic force microscopy. The response of the ChOx/MEH-PPV/SA LB film bioelectrode carried out using differential pulse voltammetry (DPV) studies reveal linearity from 1.29 to 12.91 mM of cholesterol concentration and response time as 30 s. This ChOx/MEH-PPV/SA bioelectrode exhibits values of correlation coefficient as 0.9939, standard deviation as 0.0029 μA and limit of detection as 1.66 mM. UV-visible spectrophotometer studies reveal that 5.2 × 10−3 U of ChOx are actively working per cm2 area of ChOx/MEH-PPV/SA LB film bioelectrode and this bioelectrode is thermally stable upto 55 °C with reusability of about 60 times.  相似文献   

14.
Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 °C, response time as 180 s, linearity up to 780 mg dL−1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL−1 and sensitivity as 5.4 × 10−5 Abs. mg−1 dL−1.  相似文献   

15.
Polyaniline nanotube (PANI-NT) based films have been fabricated onto indium-tin-oxide (ITO) coated glass plates via electrophoretic technique. These PANI-NT/ITO electrodes have been utilized for covalent immobilization of cholesterol oxidase (ChOx) using glutaraldehyde (Glu) as cross-linker. Structural, morphological and electrochemical characterization of PANI-NT/ITO electrode and ChOx/Glu/PANI-NT/ITO bioelectrode have been done using FT-IR spectroscopy, SEM, electrochemical impedance spectroscopy and cyclic voltammetry techniques. Response studies of the ChOx/Glu/PANI-NT/ITO bioelectrode have been carried out using both linear sweep voltammetry and UV-Visible spectrophotometry. The results of the biosensing studies reveal that this bioelectrode can be used to detect cholesterol in wide detection range of 25-500 mg/dL with high sensitivity of 3.36 mA mg(-1) dL and fast response time of 30 s at pH 7.4. This bioelectrode exhibits very low value of Michaelis-Menten constant of 1.18 mM indicating enhanced interactions between cholesterol and ChOx immobilized onto this nanostructured PANI matrix.  相似文献   

16.
Self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated for immobilization of bi-enzymes (ChOx and ChEt) towards development of enzyme biosensors for detection of free and total cholesterol. This enzyme immobilized SAM surface has been characterized by scanning electron microscopy and electrochemical measurements. The results of electrochemical response studies reveal fast enzymatic reaction in phosphate buffer saline solution without using any artificial mediator. This may be attributed to the molecular wire type behavior of short 4-ATP molecule that promotes electron transfer between enzyme and the electrode surface due to its conjugated structure. Interference free estimation of free and total cholesterol has been realized at low operating potential of 0.33 V with range of detection as 25 to 400 mg dl(-1), sensitivity of 542.3 nA mM(-1) (for ChOx/4-ATP/Au) and 886.6 nA mM(-1) (for ChEt-ChOx/4-ATP/Au) with a response time of 20 s at pH 7.4.  相似文献   

17.
The nanocomposite electrode comprising of polypyrrole (PPY) and carboxy functionalized multiwalled carbon nanotubes (MWCNT) has been electrochemically fabricated onto indium–tin–oxide (ITO) electrode using p‐toluene sulfonic acid (PTS). Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been immobilized onto this PPY– MWCNT/ITO nanocomposite electrode using N‐ethyl‐N‐(3‐dimethylaminopropyl) carbodiimide and N‐hydroxy succinimide chemistry for estimation of esterified cholesterol. The ChEt–ChOx/PPY–MWCNT/PTS/ITO bioelectrode has been characterized using Fourier transform infrared spectroscopy, electrochemical techniques, and scanning electron microscope. This ChEt–ChOx/PPY–MWCNT/PTS/ITO nanobioelectrode has a response time of about 9 s, linearity of 4 × 10?4 to 6.5 × 10?3 M/l of cholesterol oleate concentration, Km of 0.02 mM, and thermal stability of upto 45°C. This electrode exhibits improved biosensing characteristics compared with other total cholesterol electrodes reported in literature till date and can be used to estimate cholesterol in blood serum samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Cholesterol oxidase (ChOx) has been immobilized onto sol–gel derived nano-structured cerium oxide (NS-CeO2) film deposited on indium-tin-oxide (ITO) coated glass substrate. Phase identification of sol–gel NS-CeO2 film carried out using X-ray diffraction (XRD) yields reflection peak at 29.4° corresponding to (1 1 1) plane with oriented crystallite (34 nm) along c-axis normal to the substrate. Electrochemical studies reveal that NS-CeO2 provides electroactive surface for the loading of ChOx and enhances electron transfer rate in the ChOx/NS-CeO2/ITO bioelectrode. The low value of Michaelis–Menten constant (Km) obtained as 2.08 mM indicates enhanced ChOx affinity to cholesterol. The observed results show application of sol–gel derived NS-CeO2 for biosensing without any functionalization.  相似文献   

19.
Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been covalently immobilized on electrochemically prepared polyaniline (PANI) films. These PANI/ChEt/ChOx enzyme films have been characterized using UV-visible, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Electrochemical behavior of these films has been studied using cyclic voltammetry (CV) and amperometric techniques, respectively. The PANI/ChEt/ChOx enzyme films show broad oxidation peak from 0.2 to 0.5 V. These PANI/ChEt/ChOx biosensing electrodes have a response time of about 40s, linearity from 50 to 500 mg/dl of cholesterol oleate concentration. These PANI/ChEt/ChOx films are thermally stable up to 46 degrees C. This polyaniline based cholesterol biosensor has optimum pH in the range of 6.5-7.5, sensitivity as 7.5x10(-4) nA/mg dl and a lifetime of about 6 weeks.  相似文献   

20.
Cholesterol oxidase has been covalently immobilized onto 11-amino-1-undecanethiol hydrochloride (AUT) self-assembled monolayer (SAM) fabricated on gold (Au) substrates using glutaraldehyde as a cross-linker. These ChOx/AUT/Au bioelectrodes characterized using contact angle (CA) measurements; electrochemical technique and atomic force microscopy (AFM) have been utilized for the estimation of cholesterol in solution using the surface plasmon resonance (SPR) technique. These biosensing electrodes exhibiting linearity from 50 to 500 mg/dL of cholesterol in solution and sensitivity of 1.23 m0/(mg dL), can be used more than 20 times and have a shelf life of about 10 weeks when stored at 4 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号