共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film modified glassy carbon electrode was prepared by means of electrostatically trapping the silicomolybdate anion in the cationic film. The PLL‐GA‐SiMo film was stable and the charge transport through the film was fast. The modified electrode shows excellent electrocatalytic activity towards hydrogen peroxide reduction with significant reduction of overpotential, however, not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL‐GA‐SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents. 相似文献
2.
The present work describes reduction of iodate (IO3?), and periodate (IO4?) at silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film coated glassy carbon electrode in 0.1 M H2SO4. In our previous study, we were able to prepare the PLL‐GA‐SiMo film modified electrode by means of electrostatically trapping SiMo12O404? mediator in the cationic film of PLL‐GA, and the voltammetric investigation in pure supporting indicated that the charge transport through the film was fast. Here, the electrocatalytic activity of PLL‐GA‐SiMo film electrode towards iodate and periodate was tested and subsequently used for analytical determination of these analytes by amperometry. The two electron reduced species of SiMo12O404? anion was responsible for the electrocatalytic reduction of IO3? at PLL‐GA‐SiMo film electrode while two and six electron reduced species were showed electrocatalytic activity towards IO4? reduction. Under optimized experimental conditions of amperometry, the linear concentration range and sensitivity are 2.5×10?6 to 1.1×10?2 M and 18.47 μA mM?1 for iodate, and 5×10?6 to 1.43×10?4 M and 1014.7 μA mM?1 for periodate, respectively. 相似文献
3.
《Electroanalysis》2005,17(14):1309-1316
The detection limit (about 0.017 μg mL?1) for voltammetric determination of iodide (peak at +0.87 V vs. Ag/AgCl at pH 2) at a glutaraldehyde‐cross‐linked poly‐L ‐lysine modified glassy carbon electrode involving oxidation to iodine was found to be several orders of magnitude lower than that for the voltammetric determination on a bare glassy carbon electrode. This method was applied successfully to the determination of iodide in two medicinal formulations. Idoxuridine was determined indirectly at the same electrode by accumulating it first at ?0.8 V vs. Ag/AgCl. At this potential the C? I bond in the adsorbed idoxuridine is reduced giving iodide, which is then determined at the modified electrode. The method was successfully applied to the determination of idoxuridine in a urine sample. 相似文献
4.
The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Mo(CN) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping Mo(CN) mediator in the cationic film of glutaraldehyde‐cross‐linked poly‐L ‐lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer in the film was a mixed process at low scan rates (5 to 200 mV s?1), and kinetically restrained at higher scan rates (200 to 1000 mV s?1). Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL‐GA film coated electrodes. The rate constant of catalytic reaction k obtained from RDE analysis was found to be 9.5×105 cm3 mol?1 s?1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 75 μA mM?1. Amperometric estimation of AA in stirred solution shows a sensitivity of 15 μA mM?1 over the linear concentration range between 50 and 1200 μM. Interestingly, PLL‐GA‐Mo(CN) modified electrode facilitated the oxidation of ascorbic acid but not responded to other electroactive biomolecules such as dopamine, uric acid, NADH, glucose. This unique feature of PLL‐GA‐Mo(CN) modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in the presence of interferents. 相似文献
5.
Glassy carbon electrode modified with phosphotungstate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐PW) film was employed for iodate determination. The PLL‐GA‐PW film electrode shows excellent electrocatalytic activity towards iodate reduction with significant reduction of overpotential. Under optimized experimental conditions, a linear range from 5×10?8 to 2.27×10?2 M with a sensitivity of 61.75 μA mM?1 was obtained. Possible interfering species, in iodate determination, were evaluated and the applicability of proposed sensor for iodate estimation in table salt was also demonstrated. The PLL‐GA‐PW film electrode shows fast response, wider linear range, and good selectivity and stability. 相似文献
6.
Highly stable Nafion‐covered hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN)64?/Naf) film modified glassy carbon electrode (GCE), for the selective detection of dopamine (DA) in the presence of ascorbic acid (AA), was prepared by first ion‐exchanging Fe(CN)64? into PLL‐GA coating on GCE then sealing it with a Nafion outer layer. The Nafion over layer is crucial in preventing leaching of Fe(CN)64? ions from the inner layer. The first layer was acting as electrocatalyst for DA oxidation and the outer coating acted as discriminating layer for selective permeation of DA in the presence of interfering anionic species. More than 90% of the initial response was retained after coating with the Nafion protecting layer compared to a huge loss (>60%) without Nafion outer layer. 5% Nafion coating was identified as optimum thickness for the selective detection of DA in the presence of AA. 相似文献
7.
The present work describes preparation, characterization, and electrocatalytic behavior of a hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN) film modified glassy carbon electrode. The modified electrode has been successfully prepared by electrostatically binding negatively charged Fe(CN) mediator into cross‐linked poly‐L ‐lysine cationic film. The dependence of the peak current of the modified electrode in pure supporting electrolyte (pH 6.8 phosphate buffer solution; PBS) shows that the charge transport in the film is fast and relatively unimpeded at lower scan rates. Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic activity of modified electrode towards oxidation of ascorbic acid. The rate constant (k), of catalytic reaction between electrogenerated Fe(CN) ions and ascorbic acid, obtained from RDE analysis was found to be 5.53×105 cm3 mol?1 s?1. Finally, the PLL‐GA‐Fe(CN) film electrodes are successfully used for the individual estimation of ascorbic acid in the concentration range of physiological interest. 相似文献
8.
《Electroanalysis》2004,16(17):1439-1443
A film of poly‐L ‐lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross‐linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation. 相似文献
9.
Preparation,Characterization, and Bioelectrocatalytic Properties of Hemoglobin Incorporated Multiwalled Carbon Nanotubes‐Poly‐L‐lysine Composite Film Modified Electrodes Towards Bromate 下载免费PDF全文
Ying Li Shen‐Ming Chen R. Thangamuthu M. Ajmal Ali Fahad M. A. Al‐Hemaid 《Electroanalysis》2014,26(5):996-1003
The present work describes preparation of hemoglobin‐incorporated multiwalled carbon nanotubes‐poly‐L ‐lysine (MWCNT‐PLL)/Hb) composite modified electrode film modified glassy carbon electrode (GCE) and its electrocatalytic behavior towards reduction of bromate ( ) in 0.1 M acetate buffer (pH 5.6). The modified electrode has been successfully fabricated by immobilizing hemoglobin on MWCNT dispersed in poly‐L ‐lysine. The surface morphologies of MWCNT, PLL and Hb were characterized using atomic force microscopy (AFM). The voltammetric features suggested that the charge transport through the film was fast and the electrochemical behavior resembles that of surface‐confined redox species. Cyclic voltammetry was used to investigate the electrocatalytic behavior of the modified electrode towards bromate and was compared with that of the CNT‐modified as well as bare electrode. The analytical determination of bromate has been carried out in stirred solution at an optimized potential with a sensitivity of 7.56 μA mM?1 and the calibration curve was linear between 1.5×0?5 to 6.0×0?3 M. 相似文献
10.
Sodium nitroprusside (NP), a commercial vasodilator, can be pre‐concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% poly‐L ‐lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B‐R buffer pH 4.0, were 1×10?6 to 2×10?5 mol L?1 and 1×10?7 mol L?1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95–97% without any pre treatment. 相似文献
11.
A glassy carbon (GC) electrode modified with silver pentacyanonitrosylferrate (AgPCNF) film as a redox mediator was fabricated. Cyclic voltammetry was used to study the redox property of AgPCNF modified electrode. The modified electrode showed a well‐defined redox couple due to [AgIFeIII/II(CN)5NO]1‐/2‐system. The effects of scan rates, supporting electrolytes and solution pHs were studied on the electrochemical behavior of the modified electrode. The feasibility of using the AgPCNF modified electrode to measure L ‐cysteine was investigated. It showed an excellent electrocatalytic activity towards the oxidation of L ‐cysteine and the anodic currents were proportional to the L ‐cysteine concentration in the range of 0.1 μM to 20 μM, the linear regression equation is Ipa(μA) = ‐68.58 ‐ 5.78CL ‐cysteine (μM), with a correlation coefficient 0.998 for N = 23. The detection limit was down to 3.5 × 10‐8 M (three times the ratio of signal to noise). 相似文献
12.
《Electroanalysis》2004,16(23):1984-1991
A sol‐gel technique was used for the preparation of a three dimensional carbon composite electrode modified with [Cu(bpy)2]Br2 complex. A reversible redox couple of Cu(II)/Cu(I) is observed at the electrode surface. The electrochemical behavior and stability of the modified electrode was characterized by cyclic voltammetry. The charge transfer coefficient (α) and charge transfer rate constant (Ks) for the modified electrode were determined by cyclic voltammetry, which were found to be 0.46 and 14.2 s?1, respectively. The modified electrode showed excellent catalytic activity toward bromate reduction at significantly reduced overpotentials and can be used successfully for amperometric detection of bromate. Under the optimized conditions, the calibration plots are linear in the concentration range 0.5 μM ?200μM. Detection limit (signal to noise is 3) and sensitivity were found to be 0.1 μM and 20 nA / μM, respectively. These analytical parameters compare favorably with those obtained with modern analytical techniques. The modified carbon ceramic electrode doped with Cu‐Complex shows a good reproducibility, a short response time (t<2 s), remarkable long term stability (>4 months) and especially good surface renewability by simple mechanical polishing (RSD for 6 successive polishing is 1.5%). 相似文献
13.
《Electroanalysis》2005,17(23):2190-2194
Hybrid nickel‐cobalt hexacyanoferrate (NiCoHCF) particles were immobilized onto a glassy carbon electrode by cyclic voltammetry. Characterization of these particles by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction and electrochemistry revealed that NiCoHCF was a substitution‐type hybrid hexacyanoferrate rather than a simple mixture system. As an important reducing agent, hydroxylamine could be electrocatalytically oxidized at the NiCoHCF modified electrode. The effects of the solution pH and the applied potential on the amperometric response of hydroxylamine were examined. Under optimum conditions, the catalytic peak current was proportional to the concentration of hydroxylamine in the range 2.0×10?5–1.0×10?2 mol/L with a detection limit of 2.3×10?7 mol/L. Furthermore, detection results obtained with this sensor showed high sensitivity, fast response time, good stability and anti‐interference ability. 相似文献
14.
Voltammetric Determination of Sophoridine Based on Gold Nanoparticles/L‐cysteine/ Graphene Modified Glassy Carbon Electrode 下载免费PDF全文
A new strategy to make the electrochemical sensor was presented, through combining gold nanoparticles (GNPs) with reduced graphene oxide (rGO) via L‐cysteine (L‐cys) as crosslinker. The resulting electrodes were characterized by scanning electron microscopy (SEM) and electrochemical methods. And it was applied to develop a high‐sensitive electrochemical sensor for determination of sophoridine. Compared with the bare GCE and reduced graphene oxide modified electrode, the resulting electrodes exhibited excellent response toward the oxidation of sophoridine by significantly enhancing the oxidation peak currents and decreasing the overpotential of sophoridine. Under the selected conditions, there exist the linear relation between the oxidation peak currents and sophoridine concentration in the range of 1.0 x 10‐6~1.0 x 10‐4 mol L‐1, with detection limit of 4.0 x 10‐7 mol L‐1. At the same time, the method can be successfully applied to the quantitative determination of sophoridine in injection samples and its result is satisfactory. 相似文献
15.
Hong Lin Huiming Cheng Xiaopei Miao Pagona Papakonstantinou Dragan Mihailovič Meixian Li 《Electroanalysis》2009,21(23):2602-2606
A simple and enzymeless amperometric sensor for the detection of H2O2 based on a new kind of nanomaterial Mo6S9?xIx (MoSI) nanowires (NWs) was developed. The construction of the sensing platform was based on strong electrostatic interactions between negatively charged MoSI NWs and positively charged thionin molecules. MoSI NWs act as not only a good substrate for the immobilization of redox mediator thionin, but also a promoter for electrocatalysis of H2O2. The fabricated sensor showed a wide linear range over the concentration of H2O2 from 5 μM to 2.8 mM with a measurable lowest detection of 0.8 μM; furthermore, it exhibited good stability and reproducibility. 相似文献
16.
Chemical functionalization of single‐walled carbon nanotubes (SWNTs) has constructed plenty of new structures with useful properties. But the modification was often confined to organic molecules, either by covalence or noncovalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: chromium hexacyanoferrate (Cr hcf). The resulting Cr hcf/SWNTs nanocomposites were confirmed by Field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Cr hcf crystallites are observed to be finely attached to the SWNTs. The electrochemical properties of Cr hcf/SWNTs nanocomposites were also investigated. The nanocomposites modified glassy carbon (GC) electrode shows high electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5 μM to 10 mM (R=0.9989). In addition, the sensor has good stability and reproducibility. 相似文献
17.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed. 相似文献
18.
Dai Kato Atsumu Oda Mutsuo Tanaka Seiichiro Iijima Tomoyuki Kamata Masami Todokoro Yasuo Yoshimi Osamu Niwa 《Electroanalysis》2014,26(3):618-624
We developed an electrochemical system for detecting lipopolysaccharide (LPS) that uses an ultraflat nanocarbon film electrode modified with poly‐ε‐lysine with a high affinity to LPS. LPS was captured on the modified electrode, and then ferrocene labeled polymyxin B (FcPMB) was captured on the LPS adsorbed electrode via the LPS‐PMB affinity interaction. The adsorbed FcPMB provided an amplified response with Fe2+ ions, and the current response was dependent on the amount of captured LPS (LOD=2.0 ng/mL). This was due to the efficient accumulation of the obtained current for LPS and the very low noise made possible by the ultraflat surface. 相似文献
19.
The sol‐gel technique was used to construct tin pentacyanonitrosylferrate (SnPCNF) modified composite carbon ceramic electrode (CCE). This involves two steps: construction of CCE containing metallic Sn powder and then electrochemical creating of SnPCNF on the surface of CCE. The SnPCNF modified CCE (SnPCNFlCCE) was characterized by energy‐dispersive X‐ray (EDX), FTIR and cyclic voltammetry (CV) techniques. The SnPCNF film showed electrocatalytic activity toward the oxidation of L ‐cysteine. A linear calibration plot was obtained over the L ‐cysteine concentration range 1–51 μM using chronoamperometry. L ‐cysteine was determined amperometrically at the surface of this modified electrode. The detection limit (for a signal to noise of 3) and sensitivity were found to be 0.62 μM and 126 μA/mM, respectively. 相似文献
20.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, K′h were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods. 相似文献