首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谷胱甘肽过氧化物酶(GSH-Px。ECl。11。1。9)是一种含硒蛋白质,由4个相同的亚基构成,它以还原型谷胱甘肽为底物,催化还原H_2O_2和ROOH。 GSH-Px催化还原氢过氧化物的机理为乒乓机理,催化过程包括两个循环,其中B循环慢于A循环。Reich和Jasperse提出的关于有机硒模拟物的催化机理与天然酶的催化反应不同,反应过程中有氮原子的参与,本文合成的有机硒化合物Ⅰ、Ⅲ、Ⅳ为季铵盐型,氮原子无法参与催化反应过程中的成键及断键。因此,必须寻求新的反应机理。  相似文献   

2.
The phosphotriesterase (PTE) activity of a series of binuclear and mononuclear zinc(II) complexes and metallo‐β‐lactamase (mβl) from Bacillus cereus was studied. The binuclear complex 1 , which exhibits good mβl activity, shows poor PTE activity. In contrast, complex 2 , a poor mimic of mβl, exhibits much higher activity than 1 . The replacement of Cl? ligands by OH? is important for the high PTE activity of complex 2 because this complex does not show any catalytic activity in methanol. The natural enzyme mβl from B. cereus is also found to be an inefficient catalyst in the hydrolysis of phosphotriesters. These observations indicate that the binding of β‐lactam substrates at the binuclear zinc(II) center is different from that of phosphotriesters. Furthermore, phosphodiesters, the products from the hydrolysis of triesters, significantly inhibit the PTE activity of mβl and its functional mimics. Although the mononuclear complexes 3 and 4 exhibited significant mβl activity, these complexes are found to be almost inactive in the hydrolysis of phosphotriesters. These observations indicate that the elimination of phosphodiesters from the reaction site is important for the PTE activity of zinc(II) complexes.  相似文献   

3.
A new iron‐based catalyst for carbon monoxide oxidation, as a potential substitute for precious‐metal systems, has been prepared by using a facile impregnation method with iron tris‐acetylacetonate as a precursor on γ‐Al2O3. Light‐off and full conversion temperatures as low as 235 and 278 °C can be reached. However, the catalytic activity strongly depends on the loading; lower loadings perform better than higher ones. The different activities can be explained by variations of the structures formed. The structures are thoroughly characterized by a multimethodic approach by using X‐ray diffraction, Brunauer–Emmett–Teller surface areas, and Mössbauer spectroscopy combined with diffuse reflectance UV/Vis and X‐ray absorption spectroscopy. Consequently, isolated tetrahedrally coordinated Fe3+ centers and phases of AlFeO3 are identified as structural requirements for high activity in the oxidation of carbon monoxide.  相似文献   

4.
 以β-环糊精(CD)为酶模型,将Te引入β-环糊精中,成功地合成出一种新的水溶性好、活力高的谷胱甘肽过氧化物酶(GPX)小分子模拟物2-TeCD,并对其结构进行了表征.采用Wilson辅酶偶联法,间接测定了2-TeCD催化还原型谷胱甘肽(GSH)还原H2O2的GPX活力为46.7U/μmol,与文献报道的数据相比,2-TeCD的GPX活力最高.通过考察2-TeCD催化GSH还原H2O2反应的动力学,发现反应初速度对底物浓度的双倒数曲线为一组平行线,表明2-TeCD所遵循的催化机制可能为三转移乒乓机制.通过考察自由基捕获剂2,4-二叔丁基甲基苯酚对酶促和自发反应速率的影响,发现2-TeCD催化的酶促反应为非自由基机理.通过考察酶不可逆抑制剂碘乙酸对酶促反应速率的影响,发现2-TeCD催化反应过程中不生成碲醇中间体.由此推测出2-TeCD的催化循环经历碲硫化合物、次碲酸硫酯和次碲酸中间体.该催化循环与含硒GPX小分子模拟物所经历的催化循环不同,以及环糊精对底物具有识别与结合的能力,可能是2-TeCD具有高GPX活力的主要原因.  相似文献   

5.
6.
Metal–organic frameworks (MOFs) have emerged as very fascinating functional materials due to their diversity nature. A nanocomposite consisting of copper nanoparticles dispersed within a carbon matrix (Cu NPs@C) is prepared through a one‐pot thermolysis of copper‐based metal–organic framework precursors. Cu NPs@C can catalyze the oxidation of 3,3′,5,5′‐tetramethylbenzidine (TMB) to form a colored product in the presence of H2O2. As a peroxidase mimic, Cu NPs@C not only has the advantages of low cost, high stability, and easy preparation, but also follows Michaelis–Menten behaviors and shows strong affinity to H2O2. As the Cu NPs’ surfaces are free from stabilizing agent, Cu NPs@C exhibited a higher affinity to H2O2 than horseradish peroxidase. On the basis of the inhibitory effect of ascorbic acid (AA) on oxidation of TMB, this system serves as a colorimetric method for the detection of AA, suggesting that the present work would expand the potential applications of MOF‐derived nanocomposites in biomedical fields.  相似文献   

7.
The origin of the peroxidase‐like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino‐modified or citrate‐capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase‐like activity. The different catalytic activities of amino‐modified and citrate‐capped gold nanoparticles toward 3,3′,5,5′‐tetramethylbenzidine (TMB) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions.  相似文献   

8.
孔德信  江涛  管华诗 《中国化学》2005,23(7):816-822
Antioxidants are of great interest because of their involvement in many important biological and industrial processes. It is meaningful to study their structure-antioxidant activity relationship (SAAR) and design novel, efficient and low-toxicity antioxidant. In this paper, Eigen Value Analysis (EVA), a 3-dimensional quantitative structure activity relationship (3-D QSAR) method, was employed to study antioxidant SAAR. Significant relational models were obtained with all the PLS cross-validate qcv^2 values being larger than 0.5, meaning that the models have sound predictive power. Compared with other QSAR methods, EVA possesses several advantages, especially that it does not need alignment. It should be believed that EVA will be an efficient approach to SAAR.  相似文献   

9.
Enzyme mimics have been widely used as alternatives to natural enzymes, owing to their high stability and low cost. However, the activity and atom economy of enzyme mimics still need to be improved. Herein, we report the boosting effects of amino acids, peptides and proteins on the peroxidase‐like activity of Co2+. Among 20 amino acids, tryptophan (Trp) enhanced the activity of Co2+ approximately 8 times and was identified as the best stimulator. The study revealed the synergy of amino acids‐based species and HCO3? for efficient catalysis. Co2+ is proposed to bind simultaneously to HCO3? and Trp, and to form a ternary catalyst which facilitates the generation of reactive oxygen species. Based on the selective boosting by Trp, a simple and low‐cost Co2+ sensor with high sensitivity was developed, which showed a linear range of 10–300 μM and a limit of detection of 0.4 μM for Co2+.  相似文献   

10.
Abstract

The synthesis of a series of stable diarylsulfides and sulfoxides is reported. All the newly synthesized compounds were characterized by 1H, 13C NMR and mass spectroscopic techniques. A detailed mechanistic study indicates that the formation of sulfoxides follows the oxidation. In addition to synthesis, characterization and mechanistic studies, the glutathione peroxidase(GPx) mimetic activity of the newly synthesized compounds is described. It is observed that the diaryl sulfides having a heterocyclic ring attached to the nitrogen atom facilitates the oxidation of the sulfur center to form the corresponding sulfoxides. The substituents attached to the nitrogen atom play an important role in the catalytic activity of the substituted diaryl sulfides. The obtained data supports for the higher antioxidant activity of diaryl sulfides than that of the corresponding sulfoxides.  相似文献   

11.
Enantioselectivity in RNA cleavage by a synthetic metalloenzyme has been demonstrated for the first time. Thiols containing chiral ZnII‐binding head groups have been self‐assembled on the surface of gold nanoparticles. This results in the spontaneous formation of chiral bimetallic catalytic sites that display different activities (kcat) towards the enantiomers of an RNA model substrate. Substrate selectivity is observed when the nanozyme is applied to the cleavage of the dinucleotides UpU, GpG, ApA, and CpC, and remarkable differences in reactivity are observed for the cleavage of the enantiomerically pure dinucleotide UpU.  相似文献   

12.
We have developed two syntheses of vicenistatin and its analogues. Our first‐generation strategy included the rapid and sequential assembly of the macrocyclic lactam by using an intermolecular Horner–Wadsworth–Emmons reaction between the C3–C13 fragment and the C1–C2, C14–C19 fragment, followed by an intramolecular Stille coupling reaction. The second‐generation strategy utilized a ring‐closing metathesis of a hexaene intermediate to generate the desired 20‐membered macrolactam. This second‐generation strategy made it possible to prepare synthetic analogues of vicenistatin, including the C20‐ and/or C23‐demethyl analogues. Evaluation of the cytotoxic effect of these analogues indicated the importance of the fixed conformation of aglycon for determining the biological activity of the vicenistatins.  相似文献   

13.
14.
Palladium phosphanesulfonate [R2P(C6H4o‐SO3)PdMeL] catalysts permit the copolymerization of an exceptional large number of functional olefins with ethylene. However, these catalysts usually have reduced activity. We here have conducted a systematic study on the influence of the phosphane substituent, R, on activity and molecular weight. Phosphanes with strong σ‐donating character are shown to lead to the most active catalysts. Thus, the catalyst based on phosphane bis‐tert‐butyl‐phosphanyl‐benzenesulfonic acid (R=tBu) exhibits unprecedented high activity, rapidly polymerizing ethylene at room temperature to yield a linear polymer of high molecular weight (Mw=116 000 g mol?1). The influence of the R group on the catalyst ability to incorporate methyl acrylate is also investigated.  相似文献   

15.
The sirtuin enzymes are important regulatory deacylases in a variety of biochemical contexts and may therefore be potential therapeutic targets through either activation or inhibition by small molecules. Here, we describe the discovery of the most potent inhibitor of sirtuin 5 (SIRT5) reported to date. We provide rationalization of the mode of binding by solving co‐crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more “drug‐like” properties. Importantly, enzyme kinetic evaluation revealed a slow, tight‐binding mechanism of inhibition, which is unprecedented for SIRT5. This is important information when applying inhibitors to probe mechanisms in biology.  相似文献   

16.
17.
Phosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtLCl]Cl2 were analyzed by Fourier transform‐infrared, (1H and 13C) nuclear magnetic resonance, and mass and UV–Vis spectroscopy. Experimental data showed that the ligand coordinated with the metal ions via donor atoms such as nitrogen to form an octahedral arrangement of the Schiff base around the central transition‐metal atom. The nature of these complexes was identified using the molar ratio and Job's methods, with the results agreeing with a metal‐to‐ligand (M:L) molar ratio of 2:1, expect for Pt, whose M:L was 1:1. Thermodynamic activation parameters such as ?E*, ?H*, ?S*, ?G*, and K were determined from the thermogravimetric analysis curve using the Coats–Redfern method. The antioxidant activities of the prepared compounds were assessed by using 1.1‐diphenyl‐2‐picrylhydrazyl as the free radical, and the results show that the complex Schiff bases were found to possess potent antioxidant activity. The structure–activity relationship of the ligand and its complexes indicates that the presence of electron‐donating moieties, such as Co(II) and Ni(II), in the chemical structure increases the antioxidant activity, whereas the Pt(IV) and Pd(II) complexes diminished the antioxidant activity, indicating the superior activity of the hydroxyl radical (OH·) over the superoxide radical.  相似文献   

18.
用2,4-二硝基氯苯保护谷胱甘肽的巯基制出半抗原,再通过戊二醛共价反应使其与牛血清白蛋白表面的氨基结合,经超胶AcA54凝胶层析纯化,制备出有较强免疫原性的谷胱甘肽全抗原,用元素分析、红外光谱及核磁共振表征了半抗原的结构,电泳分析得全抗原分子量平均为87000道尔顿,光谱分析及圆二色谱研究表明其有较强的可强,紫外及荥光特征吸收,且抗原结构的紧密性增强。  相似文献   

19.
A three‐step continuous‐flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained in overall yields of 49–94 %. The system is modular and flexible, and the individual steps of the sequence can be interchanged with similar outcome, extending the scope of the chemistry. Biological evaluation confirmed activity on the chemokine CCR8 receptor and provided initial structure–activity‐relationship (SAR) information for this new ligand series, with the most potent member displaying full agonist activity with single‐digit nanomolar potency. To the best of our knowledge, this represents the first published example of efficient use of multistep flow synthesis combined with biological testing and SAR studies in medicinal chemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号