首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research, a modified electrode has been produced during the electropolymerization of 4-Aminobenzoic acid in the presence of sodium dodecylsulfate (SDS) and then Ni(II) ions were incorporated to the polymer by immersion of the modified electrode in a 0.1 M Ni(II) ions solution. The electrochemical behavior of Ni/poly(4-aminobenzoic acid)/sodium dodecylsulfate/carbon paste electrode (Ni/poly(4-AB)/SDS/CPE) was investigated by using cyclic voltammetry. The experimental results exhibited the stable redox behavior of the Ni(III)/Ni(II) couple immobilized at the polymeric electrode. This polymeric modified electrode has a very good activity toward the sulfite electrooxidation in a phosphate buffer solution (pH 11). By comparison of the different responses to sulfite oxidation using electrodes Ni/poly(4-AB)/SDS/CPE, poly(4-AB)/SDS/CPE and CPE, we observed that the former electrode is a more effective catalyst for the electrooxidation of sulfite. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 0.1–1 and 1–10 mM. The detection limit of the method was 0.063 mM. Finally, the method was applied to the determination of sulfite in weak liquor sample.  相似文献   

2.
An electroactive metal cyanometallate complex, nickel aquapentacyanoferrate (NAPCF) was synthesized and characterized using XRD and UV‐vis spectral studies. The solid complex was then mechanically immobilized on the surface of a paraffin impregnated graphite electrode (PIGE) and the NAPCF modified electrode was characterized using cyclic voltammetry. The dependence of the modified electrode was tested in terms of supporting electrolyte, scan rate and pH of the medium. The electrocatalytic oxidation of sulfite at the modified electrode was investigated by cyclic voltammetry, hydrodynamic voltammetry and chronoamperometry techniques. It was found that the NAPCF modified electrode efficiently exhibited electrocatalytic activity for the oxidation of sulfite with relatively high sensitivity, selectivity and long life of activity. Based on the electrocatalytic oxidation, the NAPCF modified electrode was used as a sensor for the determination of sulfite. The linear working range for the determination of sulfite was 2.78×10?6 M to 3.00×10?3 M with a detection limit of 9.26×10?7 M. The electrode was applied for the determination of sulfite in real samples satisfactorily.  相似文献   

3.
Potential cycling was used for oxidation of chloropromazine and producing an electroactive redox couples which strongly adsorbed on the electrode surface modified with carbon nanotubes and ionic liquid nanocomposite. The modified electrode shows excellent electrocatalytic activity toward NADH oxidation. The differential pulse voltammetry detection provided high sensitivity, 0.5835 A M?1, low detection limit, 80 nM at concentration range up to 20 μM. An ethanol biosensor was also developed by immobilizing alcohol dehydrogenase enzyme onto nanocomposite. Differential pulse voltammetric detection of ethanol gives linear responses over the concentration range 40 μM–1.5 mM with detection limit 5 μM and sensitivity 1.97 μA mM?1.  相似文献   

4.
Sulfite oxidase is immobilized on collagen membrane at the surface of a platinum electrode and catalyzes the oxidation of sulfite to sulfate with stoichiometric production of hydrogen peroxide. The hydrogen peroxide is detected amperometically at the platinum electrode at an applied potential of 700 mV. The system responds linearly to sulfite in the range 1–150 μM, with a detection limit of 0.2 μM. The enzyme retains over 95% of its activity for three weeks if stored at ?20° C when the probe is not in use.  相似文献   

5.
《Electroanalysis》2006,18(21):2129-2136
A sol‐gel technique was used here to prepare a renewable carbon ceramic electrode modified with nickel powder. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple due to Ni(II)/Ni(III) system with surface confined characteristics. The modified electrode shows excellent catalytic activity toward L ‐cystine, L ‐cysteine and L ‐methionine oxidation at reduced overpotential in alkaline solutions. In addition the antifouling properties at the modified electrode toward the above analytes and their oxidation products increases the reproducibility of results. L ‐cystine, L ‐cysteine and L ‐methionine were determined chronoamperometricaly at the surface of this modified electrode at pH range 9–13. Under the optimized conditions the calibration curves are linear in the concentration range 1–450 μM, 2–90 μM and 0.2–75 μM for L ‐cystine, L ‐methionine and L ‐cysteine determination, respectively. The detection limit and sensitivity were 0.64 μM, 3.8 nA/ μM for L ‐cystine, 2 μM, 5.6 nA/ μM for L ‐methionine and 0.2 μM and 8.1 nA/μM for L ‐cysteine. The advantageous of this modified electrode is high response, good stability and reproducibility, excellent catalytic activity for oxidation inert molecules at reduced overpotential and possibility of regeneration of the electrode surface by potential cycling for 5 minutes. Furthermore, the modified electrode has been prepared without using specific reagents. This sensor can be used as an amperometric detector for disulfides detection in chromatographic or flow systems.  相似文献   

6.
In this research a novel nickel complex was used as electrocatalyst for electrooxidation of glycine. A nano-structured nickel chelidamic acid was electrodeposited on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified electrode. The electrode possesses a three-dimensional (3D) porous network nanoarchitecture, in which the bimetallic Au-Pt NPs serving as metal nanoparticle based microelectrode ensembles are distributed in the matrix of interlaced 3,3′,5,5′-tetramethylbenzidine (TMB) organic nanofibers (NFs). Electrocatalytic oxidation of glycine on the surface of modified electrode was investigated with cyclic voltammetry method and the results showed that the nickel chelidamic acid films displayed excellent electrochemical catalytic activities towards glycine oxidation. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of glycine. Under optimized conditions the calibration plots are linear in the concentration range 1 μM-0.75 mM and detection limit was found to be 0.3 μM.  相似文献   

7.
Cobalt microparticles (Co MPs) modified Pt electrode is simply and conveniently fabricated. The electrochemical properties of paracetamol (PCT) at the prepared modified electrode are investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Based on these techniques, a sensitive and rapid electrochemical method is developed for the determination of PCT. The result indicates that the oxidation of PCT is strongly improved at the Co MPs/Pt electrode as compared with the bare Pt electrode, with relatively high sensitivity, stability and life time. The determination of PCT on the Co MPs/Pt with square wave voltammetry displays a high sensitivity of 101 μA/mM and a low detection limit of 0.42 μM (S/N = 3) in the range (0.5–100 μM). The sensitivity of the modified electrode for the detection of PCT is almost 17 times greater than on the bare Pt electrode. The proposed method is successfully applied to the PCT determination in tablets.  相似文献   

8.
Lin KC  Yin CY  Chen SM 《The Analyst》2012,137(6):1378-1383
This work presents that the electrocatalytic oxidation of NADH can be enhanced by the hybrid composites of polyluminol and functionalized multi-walled carbon nanotubes (MWCNTs). The hybrid composites can be easily prepared by the electropolymerization of luminol and the adsorption of functionalized MWCNTs. The modified electrode exhibits two redox couples which can show two electrocatalytic peaks at about 0.1 and 0.3 V (vs. Ag/AgCl) to NADH oxidation. The kinetic constant, k(kin), for the electrocatalytic oxidation of NADH, evaluated by chronoamperometry and voltammetry using a rotating disk electrode (RDE), provided values close to 10(5) M(-1) s(-1). At an applied potential of 0.1 V, the sensor provides a linear response range for NADH from 5 × 10(-6) up to 1.5 × 10(-4) M with a sensitivity of 183.9 μA mM(-1) cm(-2), and detection and quantification limits of 0.6 and 5 μM (S/N = 3), respectively.  相似文献   

9.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

10.
The sol‐gel technique was used to construct tin pentacyanonitrosylferrate (SnPCNF) modified composite carbon ceramic electrode (CCE). This involves two steps: construction of CCE containing metallic Sn powder and then electrochemical creating of SnPCNF on the surface of CCE. The SnPCNF modified CCE (SnPCNFlCCE) was characterized by energy‐dispersive X‐ray (EDX), FTIR and cyclic voltammetry (CV) techniques. The SnPCNF film showed electrocatalytic activity toward the oxidation of L ‐cysteine. A linear calibration plot was obtained over the L ‐cysteine concentration range 1–51 μM using chronoamperometry. L ‐cysteine was determined amperometrically at the surface of this modified electrode. The detection limit (for a signal to noise of 3) and sensitivity were found to be 0.62 μM and 126 μA/mM, respectively.  相似文献   

11.
Cyclic voltammetry and potentiometry were used to investigate the electrochemical behavior of cysteine at a chemically modified electrode prepared by incorporating cobalt(II) phthalocyanine [Co(II)Pc] into carbon paste matrix. The modified electrode showed high electrocatalytic activity toward cysteine; the overpotential for the oxidation of cysteine was decreased by more than 100 mV, and the corresponding peak current increased significantly. The electrocatalytic process was highly dependent on the pH of the supporting electrolyte. The peak currents decreased when the pH was raised to 6 and totally disappeared at pH≥ 7, resulting from the autocatalytic oxidation of cysteine by Co(II)Pc at the electrode surface. Therefore, at pH values of 6 to 8, the modified electrode was used as a potentiometric sensor for quantitative measurement of cysteine in the presence of oxygen in air saturated solutions. In fact, the Co(II)Pc/Co(I)Pc couple acts as a suitable mediator for indirect oxidation of cysteine by dissolved oxygen at approximately neutral pH values. Under the optimized conditions, the potentiometric response of the modified electrode was linear against the concentration of cysteine in the range of 0.6 μM to 2 mM. The limit of detection was found to be 0.5 μM. The potentiometric response time was ≤15 s. The electrode showed long term stability; the standard deviation of the slope obtained after repeated calibration during a period of two months was 2.8% (n = 7). Application of the electrode in a recovery experiment for the determination of cysteine added to a synthetic serum sample is described.  相似文献   

12.
《Analytical letters》2012,45(11-12):2433-2443
Abstract

Using a Clark-type oxygen electrode as sensor, a highly sensitive enzymatic assay method for hypoxanthine was developed, based on xanthine oxidase. The sensitivity of the assay is comparable to that of standard chemiluminescent techniques. The incorporation of sulfite, 0 to 150 mM, allowed hypoxanthine determination over the range of 5 nM to 100 μM. The response time was 4 min or less at 30°C.  相似文献   

13.
Increasing attention has been paid to layered double hydroxide (LDH) film modified electrode attributing to its desirable properties for fabrication of electrochemical sensor. In this paper, the Zn‐Al LDH film modified glassy carbon electrode was characterized by electrochemical methods. The enhanced electrocatalytic currents and well‐separated potentials for epinephrine (EP) and uric acid (UA) were observed at the as‐prepared electrode. Under selected condition, the differential pulse voltammetry response of the modified electrode to EP (or UA) shows a linear concentration range of 0.5 μM to 0.3 mM (or 2 μM to 0.4 mM) in the presence of 10.0 μM UA (or 20.0 μM EP). At a signal‐to‐noise ratio of 3, the calculated limits of detection are 0.13 μM and 0.66 μM, respectively. The proposed method has been performed to successfully detect EP and UA in analysis of real samples, such as in EP injection solution and human urine samples.  相似文献   

14.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

15.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

16.
Sol-gel technique was used for construction of a carbon composite electrode. The prepared carbon ceramic electrode was modified with electroless deposition of chlorogenic acid for less than 1 min. The adsorbed thin films of chlorogenic acid on carbon composite electrode show one pair of peaks with a surface confined characteristic, which strongly depends on the solution pH, as anticipated for quinone /hydroquinone functionalities. The modified electrode shows highly catalytic activity toward hydrazine electrooxidation at wide pH range (5–11). Also the rotating modified electrode shows excellent analytical performance for amperometric determination of hydrazine. The detection limit, sensitivity, response time and linear dynamic range are 20 nM, 220 nA / μM, 1 second and 0.1 μM-1 mM, respectively. The catalytic rate constant for hydrazine oxidation at the surface of modified electrode was evaluated by cyclic voltammetry and was found to be around 1.5×103 M−1s−1in phosphate buffer solution (pH 8). The precision of chronoamperometric measurements was 1–3% for 5 replicate determinations in the concentration range of the linear calibration. The reproducibility of modified CCE was evaluated with 8 successive polishing and modifications and then the anodic peak current was measured (RSD 2%). The advantages of this sensor are excellent catalytic activity, high sensitivity, good reproducibility and simplicity of preparation at short time periods.  相似文献   

17.
Thymol is oxidized at glassy carbon electrodes (GCEs) modified with coimmobilized carboxylated multiwalled carbon nanotubes (MWCNT-COOH) and surfactants of various nature in a Britton–Robinson buffer solution. The effect of the nature and concentration of surfactants in the composition of the electrode surface modifier on the amperometric response of thymol was evaluated. It was found that the best voltammetric characteristics are achieved in the case of an anionic 0.10 mM sodium dodecyl sulfate (SDS) (a decrease in oxidation potential by 50 mV and an increase in oxidation currents 2.2-fold in comparison with MWCNT-COOH/GCE). The electrooxidation of thymol at MWCNT-COOH–SDS/GCE proceeds irreversibly with the participation of one electron and one proton and is controlled by the adsorption of the analyte. The electrode response is linear in the ranges 0.500–17.0 and 17.0–150 μM of thymol with the limits of detection 0.14 μM and determination 0.48 μM. The developed method is tested on thymol-containing pharmaceutical preparations. The voltammetry data are compared with the results of an independent spectrophotometric determination.  相似文献   

18.
《Electroanalysis》2017,29(8):1985-1993
Polytyramine (PT) has been electro‐deposited onto multi‐walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes via oxidation of tyramine in 0.1 M H3PO4 by cycling the potential over the range of −400 mV to 1300 mV (versus Ag/AgCl). The reactivity of the resulting chemically‐modified electrodes was characterized using cyclic voltammetry in the presence and absence of reduced nicotinamide adenine dinucleotide (NADH). The modified electrodes displayed electrochemical activity due to the formation of quinone species and were catalytically active towards NADH oxidation by lowering the oxidation peak potential by 170 mV compared to the value of the MWCNT modified electrode with a peak potential of 180±10 mV (versus Ag/AgCl). The MWCNT/PT surface was further characterized using SEM and XPS methods, which indicated that a thin polymeric film had been formed on the electrode surface. The present work demonstrates the advantage of using PT as a platform that combines both the immobilization of alcohol dehydrogenase (ADH) and the mediation of NADH oxidation at a low overpotential essential to the design of high performance ethanol biosensors, all within an easily electropolymerizable film. The resulting biosensor displayed an ethanol sensitivity of 4.28±0.06 μA mM−1 cm−2, a linear range between 0.1 mM and 0.5 mM and a detection limit of 10 μM.  相似文献   

19.
《Electroanalysis》2004,16(10):860-865
The electrocatalytic oxidation of sulfite has been studied on the cobalt pentacyanonitrosylferrate modified glassy carbon electrode (CoPCNF). The CoPCNF films on the glassy carbon electrodes show an excellent electrocatalytic activity toward the oxidation of sulfite in 0.5 M KNO3. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and chronoamperometry. The average value of the rate constant, K, for the catalytic reaction and the diffusion coefficient, D, were evaluated by different approaches for sulfite and found to be 2.9×102 M?1s?1 and 4.6×10?6 cm2s?1, respectively. At a fixed potential under hydrodynamic conditions (stirred solutions), the oxidation current is proportional to the sulfite concentration and the calibration plot was linear over the concentration range 5×10?6–1×10?4 M. The detection limit of the method is 3×10?6 M., low enough for the trace sulfite determination.  相似文献   

20.
Tang N  Zheng J  Sheng Q  Zhang H  Liu R 《The Analyst》2011,136(4):781-786
A novel H(2)O(2) sensor based on enzymatically induced deposition of electroactive polyaniline (PANI) at a horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode is fabricated, and its electrochemical behaviors are investigated. Electrochemical impedance spectroscopy of the sensor confirmed the formation of PANI on SWCNTs through the HRP catalytic reaction. Cyclic voltammograms of PANI/HRP/SWCNTs modified Au electrodes showed a pair of well-defined redox peaks of PANI with reduction peak potentials of 0.211 and oxidation peak potentials of 0.293 V in 0.1 M HOAc-NaOAc (pH 4.3) solution. The oxidation peak current response of PANI is linearly related to H(2)O(2) concentration from 2.5 μM to 50.0 μM with a correlation coefficient of 0.9923 and a sensitivity of 200 μA mM(-1). The detection limit is determined to be 0.9 μM with a signal-to-noise ratio of 3. Thus, the synergistic performance of the enzyme, the highly efficient polymerization of PANI, and the templated deposition of SWCNTs provided an extensive platform for the design of novel electrochemical biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号