共查询到6条相似文献,搜索用时 0 毫秒
1.
Ahmad Alawad Laure Latapie David Evrard Pierre Gros Georges Istamboulie Thierry Noguer Carole Calas-Blanchard 《Electroanalysis》2021,33(2):292-295
Scanning electrochemical microscopy (SECM) is discussed as a versatile tool to provide a unique approach of localized electrochemical information in the context of biosensing research. The step-by-step immobilization of DNA aptamer with intrinsic redox activity on screen-printed carbon electrode (SPCE) was successfully monitored using SECM imaging tool. Control experiments were performed with a non-electroactive aptamer. After immobilization of these aptamers, SECM images showed the repartition of the electroactive anti-tetracycline aptamer when comparing with images produced for control and for all modification steps of SPCE. The possibility of tetracycline detection was also proved by causing a decrease in recorded current. 相似文献
2.
Scanning Kelvin Probe Force Microscopy and Scanning Electrochemical Microscopy were applied for the investigation of localized corrosion on heterogeneous aiming on the investigation of the possible correlation between the local surface potential differences, measured by the Kelvin probe technique in ambient conditions, and corrosion during immersion in a corrosive electrolyte. A model sample mimicking the interaction of Al and Cu in Al alloys was chosen to demonstrate the complementary nature of the information received from SKPFM and SECM. The necessary prerequisites for a future integration of SKP and SECM into a single set‐up are discussed. 相似文献
3.
Giorgia Sciutto Silvia Prati Rocco Mazzeo Martina Zangheri Aldo Roda Luca Bardini Giovanni Valenti Stefania Rapino Massimo Marcaccio 《Analytica chimica acta》2014
The qualitative identification of proteinaceous substances, as well as their location within a complex paint stratigraphy, is one of the most challenging issues in the characterization of painting materials. Nevertheless, information on paint components represent a crucial task for studies concerning both the ancient painting techniques adopted and the state of conservation, being fundamental investigations for the selection of appropriate conservation actions. The present research was aimed at developing a new detection approach for the immunochemical localization of ovalbumin in paint cross-sections based on the use of scanning electrochemical microscopy (SECM). The immunochemical analyses were performed using an anti-ovalbumin primary antibody and a secondary antibody labelled with horseradish peroxidase (HRP). SECM measurements were performed in feedback mode using benzoquinone (BQ)/hydroquinone (H2Q) redox couple. In presence of hydrogen peroxide (H2O2), HRP catalyzes the re-oxidation of H2Q to BQ and the increment of BQ concentration in correspondence of the target protein was detected by SECM through the electrochemical reduction of the regenerated BQ at the microelectrode. Indeed, the localization of ovalbumin was possible thanks to a clear discrimination of SECM currents, achieved by the comparison of the measurements recorded before and after H2O2 administration, based on the HRP on/off approach. The method was evaluated both on samples from standard mocks-up and on a historical sample, collected from a Renaissance wood painting. The obtained results were promising, foreseeing a wider application of SECM on cultural heritage researches. 相似文献
4.
We report determination of the apparent Michaelis constant of glucose oxidase (GOx) immobilized on a microelectrode with respect to oxygen. We used a GOx‐modified microelectrode as a probe for scanning electrochemical microscopy. We detected hydrogen peroxide generated by the enzyme reaction at the microelectrode under controlling the oxygen concentration using water electrolysis at an interdigitated array (IDA) electrode. The response depends on the oxygen concentration, which is regulated by the microelectrode position and the potential applied to the IDA electrode. We estimated the apparent Michaelis constant with respect to oxygen in this experimental condition to be about 0.28 mM. 相似文献
5.
Nicholas S. Labrum Gregory M. Curtin Prof. Dr. Elena Jakubikova Prof. Dr. Kenneth G. Caulton 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(43):9547-9555
Dimeric [CrL]2, where L is the conjugate base of bis-pyrazolyl pyridine, is evaluated for its ability to undergo inner sphere and outer sphere redox chemistry. It reacts with Cp2Fe+ to give [Cr4(HL)4(μ4-O)]2+, still containing divalent Cr. Reduction (KC8) of [CrL]2 by two electrons gives [K2(THF)3Cr3L3(μ3-O)], and by four electrons gives [K4(THF)10Cr2L2(μ-O)], each of which has scavenged (hydr)oxide from glass surface because of the electrophilicity of the underligated Cr. [K4(THF)10Cr2L2(μ-O)], is shown by comprehensive DFT calculations and analysis of intra-ligand bond lengths to contain a pyridyl radical L3− and CrII, illustrating that this pincer is proton-responsive, redox active, and a versatile donor to associated K+ ions here. The K+ electrophiles interact with electron-rich oxo, but do not significantly (>5 kcal mol−1) alter spin state energies. Inner sphere oxidation of [CrL]2 with a quinone gives [Cr2L2(semiquinone)2], while pre-reduced [CrL]22− reacts with quinone to give [K3(THF)3Cr2L2(catecholate)2(μ-OH)], a product of capture of two undercoordinated LCr(catecholate)1− by hydroxide. 相似文献
6.
《中国化学会会志》2017,64(12):1503-1509
The most common electrocatalysts for the oxygen reduction reaction (ORR) are platinum‐based ones. This work demonstrates the performance of iron‐containing metal organic frameworks (MOFs) as non‐platinum‐based nano‐electrocatalysts for ORR in an alkaline medium. As a new non‐platinum catalyst to achieve the active sites for the ORR, Mil‐100 (Fe) nanoparticles were used in aqueous KOH by the rotating‐disk electrode method. The main objectives of this study are the investigations on the electron transfer number (n ), Tafel slope, and catalytic performance. The particles size of the obtained powders is in the nanoscale range (approximately 25 nm). The electron transfer number for the ORR on the surface of iron‐containing catalyst is approximately 4, and the Tafel slope of diffusion‐corrected kinetic current density is ~50.7 mV per decade at low overpotential. This work might extend a new non‐precious‐metal catalyst structure for ORR for use in low‐temperature fuel cells. 相似文献