首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the cobalt(III)‐mediated interaction between polyhistidine (His)‐tagged proteins and nitrilotriacetic acid (NTA)‐modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well‐established Co2+‐mediated interaction between NTA and His‐tagged proteins and subsequently oxidize the Co2+ center in the complex to Co3+. Unlike conventionally used Ni2+‐ or Co2+‐mediated immobilization, the resulting Co3+‐mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co3+ complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self‐assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His‐tagged proteins and materials with NTA groups make the Co3+‐mediated interaction an attractive and widely applicable platform for protein immobilization.  相似文献   

2.
The NiII complexes [Ni([9]aneNS2‐CH3)2]2+ ([9]aneNS2‐CH3=N‐methyl‐1‐aza‐4,7‐dithiacyclononane), [Ni(bis[9]aneNS2‐C2H4)]2+ (bis[9]aneNS2‐C2H4=1,2‐bis‐(1‐aza‐4,7‐dithiacyclononylethane) and [Ni([9]aneS3)2]2+ ([9]aneS3=1,4,7‐trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal NiIII products, which have been characterized by X‐ray crystallography, UV/Vis and multi‐frequency EPR spectroscopy. The single‐crystal X‐ray structure of [NiIII([9]aneNS2‐CH3)2](ClO4)6?(H5O2)3 reveals an octahedral co‐ordination at the Ni centre, while the crystal structure of [NiIII(bis[9]aneNS2‐C2H4)](ClO4)6?(H3O)3? 3H2O exhibits a more distorted co‐ordination. In the homoleptic analogue, [NiIII([9]aneS3)2](ClO4)3, structurally characterized at 30 K, the Ni? S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn–Teller distorted octahedral stereochemistry. [Ni([9]aneNS2‐CH3)2](PF6)2 shows a one‐electron oxidation process in MeCN (0.2 M NBu4PF6, 293 K) at E1/2=+1.10 V versus Fc+/Fc assigned to a formal NiIII/NiII couple. [Ni(bis[9]aneNS2‐C2H4)](PF6)2 exhibits a one‐electron oxidation process at E1/2=+0.98 V and a reduction process at E1/2=?1.25 V assigned to NiII/NiIII and NiII/NiI couples, respectively. The multi‐frequency X‐, L‐, S‐, K‐band EPR spectra of the 3+ cations and their 86.2 % 61Ni‐enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6 %, 42.8 % and 37.2 % Ni character in [Ni([9]aneNS2‐CH3)2]3+, [Ni(bis[9]aneNS2‐C2H4)]3+ and [Ni([9]aneS3)2]3+, respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S‐thioether centres. EPR spectra for [61Ni([9]aneS3)2]3+ are consistent with a dynamic Jahn–Teller distortion in this compound.  相似文献   

3.
The coordination geometry of the NiII atom in the title complex, poly[diazidobis[μ‐1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene‐κ2N4:N4′]nickel(II)], [Ni(N3)2(C12H12N6)2]n, is a distorted octahedron, in which the NiII atom lies on an inversion centre and is coordinated by four N atoms from the triazole rings of two symmetry‐related pairs of 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene (bbtz) ligands and two N atoms from two symmetry‐related monodentate azide ligands. The NiII atoms are bridged by four bbtz ligands to form a two‐dimensional (4,4)‐network.  相似文献   

4.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

5.
Salicylhydroxamic acid (H3shi) is known for its strong coordination ability and multiple coordination modes, and can easily coordinate to metal cations to form compounds with five‐ or six‐membered rings, as well as mono‐, di‐ and multinuclear compounds with interesting structures having potential applications in organic chemistry, coordination chemistry, and the materials and biological sciences. A novel octanuclear nickel(II)–molybdenum(VI) heterometallic cluster based on the salicylhydroxamate ligand, namely di‐μ3‐acetato‐di‐μ2‐acetato‐di‐μ3‐hydroxido‐di‐μ3‐oxido‐tetraoxidooctakis(pyridine‐κN)bis(μ5‐salicylhydroxamato)hexanickel(II)dimolybdenum(VI) monohydrate, [Mo2Ni6(C7H4NO3)2(C2H3O2)4O5(OH)2(C5H5N)8]·H2O, (I), was synthesized by the reaction of sodium molybdate, nickel acetate and salicylhydroxamic acid in a dimethylformamide/pyridine/methanol solution at room temperature. The salicylhydroxamate(3−) (shi3−), acetate and oxide ligands adopt complicated coordination modes and link six NiII and two MoVI cations into the octanuclear heterometallic cluster. All of the metal cations exhibit octahedral coordination geometries and are connected to each other through the sharing of corners, edges or planes. The heterometallic clusters are further connected to form two‐dimensional supramolecular layers through weak C—H…O hydrogen bonds. Studies of the magnetic properties of the title compound reveal antiferromagnetic interactions between the NiII cations.  相似文献   

6.
UV/Vis and NMR spectroscopy were used for the structural elucidation and thermodynamic and photochemical studies of the metal‐coordinated crown‐containing macrocyclic tweezer (E,E)‐ 1 . The bis(styryl) tweezer (E,E)‐ 1 formed two types of complexes with magnesium(II): a 1:1 intramolecular asymmetric sandwich complex [(E,E)‐ 1 ]?Mg2+ and a 1:2 complex [(E,E)‐ 1 ]?(Mg2+)2. In the former case, there is direct cation intramolecular exchange (0.299 s?1, ΔG=69.4 kJ mol?1) between two parts of the bis(styryl) tweezer (E,E)‐ 1 . Addition of barium(II) to the bis(styryl) tweezer (E,E)‐ 1 led to an intramolecular centrosymmetric sandwich 1:1 complex [(E,E)‐ 1 ]?Ba2+. Irradiation of [(E,E)‐ 1 ]?Ba2+ afforded reversible intramolecular [2π+2π] photocyclization with excellent stereoselectivity and quantitative yield. In contrast, irradiation of [(E,E)‐ 1 ]?(Mg2+)2 resulted in reversible stepwise E,Z‐isomerization.  相似文献   

7.
A 1D double‐helical coordination polymer {[Cd(pbbm)2]2(ClO4)4(H2O)2}n ( 1 ) was successfully constructed by the reaction of Cd(ClO4)2 · 6H2O with 1,1′‐(1,5‐pentanediyl)bis‐1H‐benzimidazole (pbbm). Interestingly, polymer 1 exhibits highly selective capacity for the ionic exchange of Zn2+ and Cu2+ over Co2+ and Ni2+ ions in the crystalline solid state when the crystals of 1 are immersed in the aqueous solutions of the perchlorate salts of Cu2+, Zn2+, Co2+, and Ni2+ ions, respectively, which indicates that central CdII ion exchange might be considered as being dominated by the coordination ability of metal ions to free functional groups, ionic radii of exchanged metal ions, and the solution concentration of adsorbed metal salts. The parent material‐ and ion‐exchange‐induced products are identified by FT‐IR spectroscopy, PXRD patterns as well as SEM and EDS measurements. In addition, the thermal stability of 1 was also investigated.  相似文献   

8.
The crystal structure of the title complex, [Ni(C6H14N2)2]Br2, consists of discrete [Ni(C6H14N2)2]2+ cations and bromide counter‐anions. The NiII ion is at the center of symmetry and is four‐coordinated by four nitro­gen donors of the mesocyclic ligand 1,5‐di­aza­cyclo­octane (DACO) [Ni—N 1.935 (2)–1.937 (2) Å]. The coordination geometry of NiII can be considered as square planar and both DACO ligands take the boat–chair conformation. The bromide anions are hydrogen bonded with the nitro­gen donors of the ligands to form a macrocycle‐like ring system.  相似文献   

9.
《Chemphyschem》2003,4(3):268-275
A generic method is described for the reversible immobilization of polyhistidine‐bearing polypeptides and proteins on attenuated total reflecting (ATR) sensor surfaces for the detection of biomolecular interactions by FTIR spectroscopy. Nitrilotriacetic acid (NTA) groups are covalently attached to self‐assembled monolayers of either thioalkanes on gold films or mercaptosilanes on silicon dioxide films deposited on germanium internal reflection elements. Complex formation between Ni2+ ions and NTA groups activates the ATR sensor surface for the selective binding of polyhistidine sequences. This approach not only allows a stable and reversible immobilization of histidine‐tagged peptides (His–peptides) but also simultaneously allows the direct in situ quantification of surface‐adsorbed molecules from their specific FTIR spectral bands. The surface concentrations of both NTA and His–peptide on silanized surfaces were determined to be 1.1 and 0.4 molecules nm?2, respectively, which means that the surface is densely covered. A comparison of experimental FTIR spectra with simulated spectra reveals a surface‐enhancement effect of one order of magnitude for the gold surfaces. With the presented sensor surfaces, new ways are opened up to investigate, in situ and with high sensitivity and reproducibility, protein–ligand, protein–protein, protein–DNA interactions, and DNA hybridization by ATR–FTIR spectroscopy.  相似文献   

10.
In the title compound, {[NiCl2(C19H17N5O2)2]·4C3H7NO}n, the NiII atom is located on an inversion centre and is in a six‐coordinated octahedral geometry, formed by four pyridine N atoms from four N2,N6‐bis[(pyridin‐3‐yl)methyl]pyridine‐2,6‐dicarboxamide (BPDA) ligands occupying the equatorial plane and two chloride anions at the axial sites. The bidentate bridging BPDA ligands link the NiII atoms into a two‐dimensional corrugated grid‐like flexible layer with a (4,4)‐connected topology, which consists of left‐ and right‐handed helical chains sharing the common NiII atoms. Investigation of the thermal stability shows that the network is stable up to 573 K.  相似文献   

11.
The strikingly different reactivity of a series of homo‐ and heterodinuclear [(MIII)(μ‐O)2(MIII)′]2+ (M=Ni; M′=Fe, Co, Ni and M=M′=Co) complexes with β‐diketiminate ligands in electrophilic and nucleophilic oxidation reactions is reported, and can be correlated to the spectroscopic features of the [(MIII)(μ‐O)2(MIII)′]2+ core. In particular, the unprecedented nucleophilic reactivity of the symmetric [NiIII(μ‐O)2NiIII]2+ complex and the decay of the asymmetric [NiIII(μ‐O)2CoIII]2+ core through aromatic hydroxylation reactions represent a new domain for high‐valent bis(μ‐oxido)dimetal reactivity.  相似文献   

12.
13.
The three transition‐metal complexes, (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (I), (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(nitrato‐κO)zinc(II), [Zn(NO3)2(C18H40N4)], (II), and aquachlorido(meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)copper(II) chloride, [CuCl(C18H40N4)(H2O)]Cl, (III), are described. The molecules display a very similarly distorted 4+2 octahedral environment for the cation [located at an inversion centre in (I) and (II)], defined by the macrocycle N4 group in the equatorial sites and two further ligands in trans‐axial positions [two O–ClO3 ligands in (I), two O–NO2 ligands in (II) and one chloride and one aqua ligand in (III)]. The most significant difference in molecular shape resides in these axial ligands, the effect of which on the intra‐ and intermolecular hydrogen bonding is discussed. In the case of (I), all strong hydrogen‐bond donors are saturated in intramolecular interactions, while weak intermolecular C—H...O contacts result in a three‐dimensional network. In (II) and (III), instead, there are N—H and O—H donors left over for intermolecular interactions, giving rise to the formation of strongly linked but weakly interacting chains.  相似文献   

14.
Partial reduction of the CuII ions in the aqueous system CuII–en–[Ni(CN)4]2? (1/1/1) (en is 1,2‐di­amino­ethane) yields a novel heterobimetallic mixed‐valence compound, poly­[[aqua­bis(1,2‐di­amino­ethane)copper(II)] [hexa‐μ‐cyano‐tetra­cyano­bis(1,2‐di­amino­ethane)­tricopper(I,II)­dinickel(II)] dihydrate], [Cu(C2H8N2)2(H2O)][Ni2Cu3(CN)10(C2H8N2)2]·2H2O or [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O. The structure is formed by a negatively charged two‐dimensional array of the cyano complex [Cu(en)2Ni2Cu2(CN)10]n2n?, [Cu(en)2(H2O)]2+ complex cations and water mol­ecules of crystallization. These last are involved in a complicated hydrogen‐bonding system. The cyano groups act as terminal, μ2‐bridging or μ3‐bridging ligands.  相似文献   

15.
Silica (SiO2) nanospheres (NSs) with immobilized metal ligands have been prepared for the affinity separation of proteins. First, SiO2 NSs were prepared by controlled hydrolysis of tetraethoxysilane in a basic aqueous-ethanol solution. Then through reaction of iminodiacetic acid (IDA) with 3-glycidoxypropyltrimethoxysilane and immobilization of them onto the surfaces of above SiO2 NSs, novel affinity adsorbents with IDA chelating groups were obtained. After chelating Ni2+ ions, the SiO2–IDA–Ni2+ NSs were applied to separate his-tagged proteins directly from the mixture of lysed cells. The SiO2–IDA–Ni2+ NSs present negligible nonspecific protein adsorption and high protein binding ability (28.3 mg/g).  相似文献   

16.
Calculations of nitrogen NMR parameters [chemical shifts δN and indirect nuclear spin–spin coupling constants J(N,N), J(N,13C), J(29Si,N)] of noncyclic azo‐compounds R1 NN R2 (R1, R2 = H, Me, Ph, SiH3, SiMe3) and cyclic azo‐compounds [NNCH2, NN(CH2)3 NN(CH2)2SiH2, and NN(SiH2CH2SiH2)] by density functional theory (DFT) methods [B3LYP/6‐311+G(d,p) level of theory] provide data in reasonable agreement with experimental values. The influence of cis‐ and trans‐geometry is reflected by the calculations, and amino‐nitrenes are also included for comparison. The spin–spin coupling constants are analyzed with respect to contact (Fermi contact term, FC) and non‐ contact contributions (paramagnetic and diamagnetic spin‐orbital terms, PSO and DSO, and spin‐dipole term, SD). Bis(trimethylsilyl)diazene 6a can be generated by an alternative method, using the reaction of bis(trimethylsilyl)sulfur diimide with bis‐ (trimethylsilyl)amino‐trimethylsilylimino‐phosphane. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:84–91, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20075  相似文献   

17.
A novel heterospin complex containing both NiII and nitroxide radical ligands: [Ni(salox)2(NIT4Py)2] ( 1 ) (salox = salicylaldoxime, NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐ tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) has been synthesized and structurally characterized. The structure consists of neutral Ni(salox)2(NIT4Py)2 moieties bridged by intermolecular hydrogen bonds, forming a one‐dimensional chain structure. Magnetic measurements show intramolecular antiferromagnetic interactions between NIT4Py and Ni2+ ion.  相似文献   

18.
Flexible, chelating bis(NHC) ligand 2 , able to accommodate both cis‐ and trans‐coordination modes, was used to synthesize ( 2 )Ni(η2‐cod), 3 . In reaction with GeCl2, it produced ( 2 )NiGeCl2, 4 , featuring a T‐shaped Ni0 and a pyramidal Ge center. Complex 4 could also be prepared from [( 2 )GeCl]Cl, 5 , and Ni(cod)2, in a reaction that formally involved Ni–Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ‐donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10 , as well as (NHC)2GeCl2 derivative 11 , incorporating ligands that cannot accommodate a wide bite angle, failed to produce isolable Ni–Ge complexes. The isolation of ( 2 )Ni(η2‐Py), 12 , provides further evidence for the reluctance of the ( 2 )Ni0 fragment to act as a σ‐Lewis acid.  相似文献   

19.
Pincer complexes can act as catalysts in organic transformations and have potential applications in materials, medicine and biology. They exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ metal–carbon bond. Nickel derivatives of these ligands have shown high catalytic activities in cross‐coupling reactions and other industrially relevant transformations. This work reports the crystal structures of two polymorphs of the title NiII POCOP pincer complex, [Ni(C29H41N2O8P2)Cl] or [NiCl{C6H2‐4‐[OCOC6H4‐3,5‐(NO2)2]‐2,6‐(OPtBu2)2}]. Both pincer structures exhibit the NiII atom in a distorted square‐planar coordination geometry with the POCOP pincer ligand coordinated in a typical tridentate manner via the two P atoms and one arene C atom via a C—Ni σ bond, giving rise to two five‐membered chelate rings. The coordination sphere of the NiII centre is completed by a chloride ligand. The asymmetric units of both polymorphs consist of one molecule of the pincer complex. In the first polymorph, the arene rings are nearly coplanar, with a dihedral angle between the mean planes of 27.9 (1)°, while in the second polymorph, this angle is 82.64 (1)°, which shows that the arene rings are almost perpendicular to one another. The supramolecular structure is directed by the presence of weak C—H…O=X (X = C or N) interactions, forming two‐ and three‐dimensional chain arrangements.  相似文献   

20.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号