共查询到20条相似文献,搜索用时 15 毫秒
1.
Javier A. Cabeza Prof. Ignacio del Río Prof. Enrique Pérez‐Carreño Prof. Vanessa Pruneda 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(18):5425-5436
The cationic cluster complexes [Ru3(μ‐H)(μ‐κ2N,C‐L1 Me)(CO)10]+ ( 1 +; HL1 Me=N‐methylpyrazinium), [Ru3(μ‐H)(μ‐κ2N,C‐L2 Me)(CO)10]+ ( 2 +; HL2 Me=N‐methylquinoxalinium), and [Ru3(μ‐H)(μ‐κ2‐N,C‐L3 Me)(CO)10]+ ( 3 +; HL3 Me=N‐methyl‐1,5‐naphthyridinium), which contain cationic N‐heterocyclic ligands, undergo one‐electron reduction processes to become short lived, ligand‐centered, trinuclear, radical species ( 1 – 3 ) that end in the formation of an intermolecular C? C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C2 symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru6(μ‐H)2{μ6‐κ4N2,C2‐(L1 Me)2}(CO)18] ( 5 ; from 1 +), [Ru6(μ‐H)2{μ6‐κ4N2,C2‐(L2 Me)2}(CO)18] ( 6 ; from 2 +), and [Ru6(μ‐H)2{μ4‐κ8N2,C6‐(L3 Me)2}(CO)18] ( 7 ; from 3 +). The structures of the final hexanuclear products depend on the N‐heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face‐capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6 . The trinuclear subunits of 7 are edge‐bridged by its bridging ligand. In the presence of moisture, the reduction of 3 + with cobaltocene also affords a trinuclear derivative, [Ru3(μ‐H)(μ‐κ2N,C‐L3′ Me)(CO)10] ( 8 ), whose bridging ligand (L3′ Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3 + is attached to the C6 carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd‐electron species, 1 – 3 , and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand‐based LUMOs. 相似文献
2.
Prof. Javier A. Cabeza Dr. Pablo García‐Álvarez Dr. Enrique Pérez‐Carreño Dr. Vanessa Pruneda 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(10):3426-3436
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)2{μ6‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions. 相似文献
3.
You Zi Markus Lange Constanze Schultz Ivan Vilotijevic 《Angewandte Chemie (International ed. in English)》2019,58(31):10727-10731
Latent nucleophiles are compounds that are themselves not nucleophilic but can produce a strong nucleophile when activated. Such nucleophiles can expand the scope of Lewis base catalyzed reactions. As a proof of concept, we report that N‐silyl pyrroles, indoles, and carbazoles serve as latent N‐centered nucleophiles in substitution reactions of allylic fluorides catalyzed by Lewis bases. The reactions feature broad scopes for both reaction partners, excellent regioselectivities, and produce enantioenriched N‐allyl pyrroles, indoles, and carbazoles when chiral cinchona alkaloid catalysts are used. 相似文献
4.
《化学:亚洲杂志》2018,13(19):2947-2955
After double deprotonation, 2,6‐diaryl‐p‐benzoquinonodiimidazoles (aryl=4‐tolyl ( I ) or 2‐pyridyl ( II )) were shown to bridge two [Ru(bpy)2]2+ (bpy=2,2′‐bipyridine) complex fragments through the imidazolate N and p‐quinone O ( I → 1 2+) or through the imidazolate N and pyridyl N donor atoms ( II → 2 2+). Characterization by crystal structure analysis, 1H/13C NMR spectroscopy, cyclic and differential pulse voltammetry, and spectroelectrochemistry (UV/Vis/NIR, IR, EPR) in combination with TD‐DFT calculations revealed surprisingly different electronic structures for redox systems 1 n and 2 n. Whereas 1 2+ is reduced to a radical complex with considerable semiquinone character, the reduction of 2 2+ with its exclusive N coordination exhibits little spin on the now redox‐innocent quinone moiety, compared with the electron uptake by the pyridyl–imidazolate chelating site. The first of two close‐lying oxidation processes occurs at the bridging heteroquinone ligand, whereas the second oxidation is partly ( 1 4+) or predominantly ( 2 4+) centered on the metal atoms. 相似文献
5.
Prof. Javier A. Cabeza Dr. José M. Fernández‐Colinas Dr. Pablo García‐Álvarez Dr. Enrique Pérez‐Carreño Dr. Vanessa Pruneda Dr. Juan F. Van der Maelen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(28):9251-9260
The C‐alkyl groups of cationic triruthenium cluster complexes of the type [Ru3(μ‐H)(μ‐κ2N1,C2 ‐L)(CO)10]+ (HL represents a generic C‐alkyl‐N‐methylpyrazium species) have been deprotonated to give kinetic products that contain unprecedented C‐alkylidene derivatives and maintain the original edge‐bridged decacarbonyl structure. When the starting complexes contain various C‐alkyl groups, the selectivity of these deprotonation reactions is related to the atomic charges of the alkyl H atoms, as suggested by DFT/natural‐bond orbital (NBO) calculations. Three additional electronic properties of the C‐alkyl C? H bonds have also been found to correlate with the experimental regioselectivity because, in all cases, the deprotonated C? H bond has the smallest electron density at the bond critical point, the greatest Laplacian of the electron density at the bond critical point, and the greatest total energy density ratio at the bond critical point (computed by using the quantum theory of atoms in molecules, QTAIM). The kinetic decacarbonyl products evolve, under appropriate reaction conditions that depend upon the position of the C‐alkylidene group in the heterocyclic ring, toward face‐capped nonacarbonyl derivatives (thermodynamic products). The position of the C‐alkylidene group in the heterocyclic ring determines the distribution of single and double bonds within the ligand ring, which strongly affects the stability of the neutral decacarbonyl complexes and the way these ligands coordinate to the metal atoms in the nonacarbonyl products. The mechanisms of these decacarbonylation processes have been investigated by DFT methods, which have rationalized the structures observed for the final products and have shed light on the different kinetic and thermodynamic stabilities of the reaction intermediates, thus explaining the reaction conditions experimentally required by each transformation. 相似文献
6.
Hydroxo‐Bridged Dimers of Oxo‐Centered Ruthenium(III) Triangle: Synthesis and Spectroscopic and Theoretical Investigations 下载免费PDF全文
Apoorva Upadhyay Jitendrasingh Rajpurohit Mukesh Kumar Singh Richa Dubey Anant Kumar Srivastava Prof. Dr. Ashutosh Kumar Prof. Dr. Gopalan Rajaraman Prof. Dr. Maheswaran Shanmugam 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(20):6061-6070
The homometallic hexameric ruthenium cluster of the formula [RuIII6(μ3‐O)2(μ‐OH)2((CH3)3CCO2)12(py)2] ( 1 ) (py=pyridine) is solved by single‐crystal X‐ray diffraction. Magnetic susceptibility measurements performed on 1 suggest that the antiferromagnetic interaction between the RuIII centers is dominant, and this is supported by theoretical studies. Theoretical calculations based on density functional methods yield eight different exchange interaction values for 1 : J1=?737.6, J2=+63.4, J3=?187.6, J4=+124.4, J5=?376.4, J6=?601.2, J7=?657.0, and J8=?800.6 cm?1. Among all the computed J values, six are found to be antiferromagnetic. Four exchange values (J1, J6, J7 and J8) are computed to be extremely strong, with J8, mediated through one μ‐hydroxo and a carboxylate bridge, being by far the largest exchange obtained for any transition‐metal cluster. The origin of these strong interactions is the orientation of the magnetic orbitals in the RuIII centers, and the computed J values are rationalized by using molecular orbital and natural bond order analysis. Detailed NMR studies (1H, 13C, HSQC, NOESY, and TOCSY) of 1 (in CDCl3) confirm the existence of the solid‐state structure in solution. The observation of sharp NMR peaks and spin‐lattice time relaxation (T1 relaxation) experiments support the existence of strong intramolecular antiferromagnetic exchange interactions between the metal centers. A broad absorption peak around 600–1000 nm in the visible to near‐IR region is a characteristic signature of an intracluster charge‐transfer transition. Cyclic voltammetry experiments show that there are three reversible one‐electron redox couples at ?0.865, +0.186, and +1.159 V with respect to the Ag/AgCl reference electrode, which corresponds to two metal‐based one‐electron oxidations and one reduction process. 相似文献
7.
The π–π interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5‐triazine, 1,2,3‐triazine, 1,2,4,5‐tetrazine, and 1,2,3,4,5‐pentazine are systematically investigated. The T‐shaped structures of all complexes studied exhibit a contraction of the C? H bond accompanied by a rather large blue shift (40–52 cm?1) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced‐parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C? H σ antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart. 相似文献
8.
Andrés G. Algarra Marta Feliz Dr. M. Jesús Fernández‐Trujillo Prof. Rosa Llusar Prof. Vicent S. Safont Prof. Cristian Vicent Dr. Manuel G. Basallote Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(18):4582-4594
Opening the cluster core : Substitution of the chloride ligand in the novel cationic cluster [W3CuS4H3Cl(dmpe)3]+ (see figure; dmpe=1,2‐bis(dimethylphosphino)ethane) by acetonitrile is promoted by water addition. Kinetic and density functional theory studies lead to a mechanistic proposal in which acetonitrile or water attack causes the opening of the cluster core with dissociation of one of the Cu? S bonds to accommodate the entering ligand.
9.
Synthesis of Anionic Phosphorus‐Containing Heterocycles by Intramolecular Cyclizations Involving N‐Functionalized Phosphinecarboxamides 下载免费PDF全文
Dr. Thomas P. Robinson Prof. Dr. Jose M. Goicoechea 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(15):5727-5731
We report that the 2‐phosphaethynolate anion (PCO?) reacts with propargylamines in the presence of a proton source to afford novel N‐derivatized phosphinecarboxamides bearing alkyne functionalities. Deprotonation of these species gives rise to novel five‐ and six‐membered anionic heterocycles resulting from intramolecular nucleophilic attack of the resulting phosphide at the alkyne functionality (via 5‐exo‐dig or 6‐endo‐dig cyclizations, respectively). The nature of the substituents on the phosphinecarboxamide can be used to influence the outcome of these reactions. This strategy represents a unique approach to phosphorus‐containing heterocylic systems that are closely related to known organic molecules with interesting bio‐active properties. 相似文献
10.
Eric Mädl Dr. Mikhail V. Butovskii Dr. Gábor Balázs Dr. Eugenia V. Peresypkina Dr. Alexander V. Virovets Michael Seidl Prof. Dr. Manfred Scheer 《Angewandte Chemie (International ed. in English)》2014,53(29):7643-7646
Unprecedented functionalized products with an η4‐P5 ring are obtained by the reaction of [Cp*Fe(η5‐P5)] ( 1 ; Cp*=η5‐C5Me5) with different nucleophiles. With LiCH2SiMe3 and LiNMe2, the monoanionic products [Cp*Fe(η4‐P5CH2SiMe3)]? and [Cp*Fe(η4‐P5NMe2)]?, respectively, are formed. The reaction of 1 with NaNH2 leads to the formation of the trianionic compound [{Cp*Fe(η4‐P5)}2N]3?, whereas the reaction with LiPH2 yields [Cp*Fe(η4‐P5PH2)]? as the main product, with {[Cp*Fe(η4‐P5)]2PH}2? as a byproduct. The calculated energy profile of the reactions provides a rationale for the formation of the different products. 相似文献
11.
Thien Y Vu Prof. Anna Chrostowska Prof. Thi Kieu Xuan Huynh Prof. Saïd Khayar Prof. Alain Dargelos Katarzyna Justyna Dr. Beata Pasternak Prof. Stanisław Leśniak Prof. Curt Wentrup 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(44):14983-14988
Thermal reactions of N‐benzylidene‐ and N‐(2‐pyridylmethylidene)‐tert‐butylamines ( 5 and 13 ) under FVT conditions have been investigated. Unexpectedly, at 800 °C, compound 5 yields 1,2‐dimethylindole and 3‐methylisoquinoline. In the reaction of 13 at 800 °C, 3‐methylimidazo[1,5‐a]pyridine was obtained as the major product. Mechanisms of these reactions have been proposed on the basis of DFT calculations. Furthermore, UV‐photoelectron spectroscopy combined with FVT has been applied for direct monitoring and characterization of the thermolysis products in situ. 相似文献
12.
Juan Pablo Martínez Dr. Sai Vikrama Chaitanya Vummaleti Dr. Laura Falivene Prof. Dr. Steven P. Nolan Prof. Dr. Luigi Cavallo Prof. Dr. Miquel Solà Dr. Albert Poater 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(19):6617-6623
Density functional theory calculations have been used to explore the potential of Ru‐based complexes with 1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene (SIMes) ligand backbone ( A ) being modified in silico by the insertion of a C60 molecule ( B and C ), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A , B , and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron‐withdrawing N‐heterocyclic carbene improves the performance of unannulated complex A . The efficiency of complex B is only surpassed by complex A when the backbone of the N‐heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic‐donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A . Overall, this study indicates that such Ru‐based complexes B and C might have the potential to be effective olefin metathesis catalysts. 相似文献
13.
Dr. Friedrich Wossidlo Daniel S. Frost Jinxiong Lin Dr. Nathan T. Coles Katrin Klimov Manuela Weber Dr. Tobias Böttcher Prof. Dr. Christian Müller 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(50):12788-12795
The synthesis and isolation of a phosphinine selenide was achieved for the first time by reacting red selenium with 2,6-bis(trimethylsilyl)phosphinine. The rather large coupling constant of 1JP,Se=883 Hz is in line with a P−Se bond of high s-character. The σ-electron donating Me3Si-substituents significantly increase the energy of the phosphorus lone pair and hence its basicity, making the heterocycle considerably more basic and nucleophilic than the unsubstituted phosphinine C5H5P, as confirmed by the calculated gas phase basicities. NBO calculations further reveal that the lone pairs of the selenium atom are stabilized through donor-acceptor interactions with antibonding orbitals of the aromatic ring. The novel phosphinine selenide shows a distinct reactivity towards hexafluoro-2-butyne, Au(I)Cl as well as iPrOH. Our results pave the way for new perspectives in the chemistry of phosphorus in low coordination. 相似文献
14.
15.
Yu Jiang Run Sun Prof. Dr. Xiang‐Ying Tang Prof. Dr. Min Shi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(50):17910-17924
In recent years, α‐imino rhodium carbene complexes derived by ring‐opening of N‐sulfonyl‐1,2,3‐triazoles have attracted much attention from organic chemists. Many transformations of these species have been reported that involve, in most cases, nucleophilic attack at the carbene center of the α‐imino rhodium carbene, facilitating the synthesis of a wide range of novel and useful compounds, particularly heterocycles. This Minireview mainly focuses on advances in the transformation of N‐sulfonyl‐1,2,3‐triazoles during the past two years. 相似文献
16.
17.
José Manuel Villalba Franco Dr. Gregor Schnakenburg Prof. Dr. Arturo Espinosa Ferao Prof. Dr. Rainer Streubel 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(9):3727-3735
The novel N,P,C‐cage complexes 5 a – f and 6 a – f have been obtained by the reaction of the P‐pentamethylcyclopentadienylphosphinidene complex 2 , generated thermally from 2H‐azaphosphirene complex 1 , with N‐methyl‐C‐arylcarbaldimines 3 a – f . Li/Cl phosphinidenoid complex 8 reacted with 3 a , b to give N,P,C‐cage complexes 6 a , b , whereas with 3 c – f , complexes 6 c – f were obtained in negligible amounts only. Both types of ligand N,P,C‐cage structures 5 and 6 were found to be in an unprecedented equilibrium, with 5 a , f as the predominant species. Transient electrophilic terminal phosphinidene complexes 10 a – f serve as intermediates in both ligand interconversions ( 5 a , f ? 6 a , f ), as evidenced through trapping reactions with phenylacetylene and N‐methyl‐C‐phenylcarbaldimine, thus leading to the novel N,P,C‐cage complexes 13 b and 15 . DFT calculations predicted a small difference in the relative energies of the two types of N,P,C‐cage ligands, and a remarkable stabilisation of the aminophosphinidene complex 10 as the common precursor, thereby providing an insight into this surprising 5‐ring–3‐ring interconversion. In depth analysis of intermediate 10 revealed the occurrence of both through‐bond (conventional inductive/mesomeric effects) and through‐space (non‐covalent interactions) mechanisms, which amount to 67.8 and 14.4 kcal mol?1, respectively, and account for the remarkable stabilisation of this intermediate. 相似文献
18.
Yejun Li Prof. Jonathan T. Lyon Alex P. Woodham Dr. André Fielicke Prof. Ewald Janssens 《Chemphyschem》2014,15(2):328-336
Cationic silver‐doped silicon clusters, SinAg+ (n=6–15), are studied using infrared multiple photon dissociation in combination with density functional theory computations. Candidate structures are identified using a basin‐hopping global optimizations method. Based on the comparison of experimental and calculated IR spectra for the identified low‐energy isomers, structures are assigned. It is found that all investigated clusters have exohedral structures, that is, the Ag atom is located at the surface. This is a surprising result because many transition‐metal dopant atoms have been shown to induce the formation of endohedral silicon clusters. The silicon framework of SinAg+ (n=7–9) has a pentagonal bipyramidal building block, whereas the larger SinAg+ (n=10–12, 14, 15) clusters have trigonal prism‐based structures. On comparing the structures of SinAg+ with those of SinCu+ (for n=6–11) it is found that both Cu and Ag adsorb on a surface site of bare Sin+ clusters. However, the Ag dopant atom takes a lower coordinated site and is more weakly bound to the Sin+ framework than the Cu dopant atom. 相似文献
19.
Advancements in the Synthesis and Applications of Cationic N‐Heterocycles through Transition Metal‐Catalyzed C−H Activation 下载免费PDF全文
Cationic N‐heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light‐emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N‐heterocycles has received a lot of attention. In particular, many C?H activation methodologies that realize high step‐ and atom‐economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N‐heterocycles through C?H activation reactions are summarized. The new C?H activation reactions described in this review are preferred over their classical analogs. 相似文献
20.
Dr. J. Oscar C. Jiménez‐Halla Dr. Marcin Kalek Prof. Jacek Stawinski Prof. Fahmi Himo 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(39):12424-12436
The mechanism and sources of selectivity in the palladium‐catalyzed propargylic substitution reaction that involves phosphorus nucleophiles, and which yields predominantly allenylphosphonates and related compounds, have been studied computationally by means of density functional theory. Full free‐energy profiles are computed for both H‐phosphonate and H‐phosphonothioate substrates. The calculations show that the special behavior of H‐phosphonates among other heteroatom nucleophiles is indeed reflected in higher energy barriers for the attack on the central carbon atom of the allenyl/propargyl ligand relative to the ligand‐exchange pathway, which leads to the experimentally observed products. It is argued that, to explain the preference of allenyl‐ versus propargyl‐phosphonate/phosphonothioate formation in reactions that involve H‐phosphonates and H‐phosphonothioates, analysis of the complete free‐energy surfaces is necessary, because the product ratio is determined by different transition states in the respective branches of the catalytic cycle. In addition, these transition states change in going from a H‐phosphonate to a H‐phosphonothioate nucleophile. 相似文献