首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An essentially molecular ruthenium–benzene complex anchored at the aluminum sites of dealuminated zeolite Y was formed by treating a zeolite‐supported mononuclear ruthenium complex, [Ru(acac)(η2‐C2H4)2]+ (acac=acetylacetonate, C5H7O2?), with 13C6H6 at 413 K. IR, 13C NMR, and extended X‐ray absorption fine structure (EXAFS) spectra of the sample reveal the replacement of two ethene ligands and one acac ligand in the original complex with one 13C6H6 ligand and the formation of adsorbed protonated acac (Hacac). The EXAFS results indicate that the supported [Ru(η6‐C6H6)]2+ incorporates an oxygen atom of the support to balance the charge, being bonded to the zeolite through three Ru? O bonds. The supported ruthenium–benzene complex is analogous to complexes with polyoxometalate ligands, consistent with the high structural uniformity of the zeolite‐supported species, which led to good agreement between the spectra and calculations at the density functional theory level. The calculations show that the interaction of the zeolite with the Hacac formed on treatment of the original complex with 13C6H6 drives the reaction to form the ruthenium–benzene complex.  相似文献   

3.
4.
5.
Rational molecular design of catalytic systems capable of smooth O? O bond formation is critical to the development of efficient catalysts for water oxidation. A new ruthenium complex was developed, which bears pendant SO3? groups in the secondary coordination sphere: [Ru(terpy)(bpyms)(OH2)] (terpy=2,2′:6′,2′′‐terpyridine, bpyms=2,2′‐bipyridine‐5,5′‐bis(methanesulfonate)). Water oxidation driven by a Ce4+ oxidant is distinctly accelerated upon introduction of the pendant SO3? groups in comparisons to the parent catalyst, [Ru(terpy)(bpy)(OH2)]2+ (bpy=2,2′‐bipyridine). Spectroscopic, electrochemical, and crystallographic investigations concluded that the pendant SO3? groups promote the formation of an O? O bond via the secondary coordination sphere on the catalyst, whereas the influence of the pendant SO3? groups on the electronic structure of the [Ru(terpy)(bpy)(OH2)]2+ core is negligible. The results of this work indicate that modification of the secondary coordination sphere is a valuable strategy for the design of water oxidation catalysts.  相似文献   

6.
7.
A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid–liquid–gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The 13C spectra show that dehydration of 1‐13C‐cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the 13C label. A simplified kinetic model shows the E1‐type elimination fully accounts for the initial rates of 1‐13C‐cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2‐hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl‐1‐cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100‐fold faster per proton.  相似文献   

8.
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol‐to‐olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H‐SAPO‐34 and H‐SSZ‐13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol‐treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time‐dependent density functional theory (TDDFT) calculations. Static gas‐phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.  相似文献   

9.
10.
Selectivity control is a challenging goal in Fischer–Tropsch (FT) synthesis. Hydrogenolysis is known to occur during FT synthesis, but its impact on product selectivity has been overlooked. Demonstrated herein is that effective control of hydrogenolysis by using mesoporous zeolite Y‐supported cobalt nanoparticles can enhance the diesel fuel selectivity while keeping methane selectivity low. The sizes of the cobalt particles and mesopores are key factors which determine the selectivity both in FT synthesis and in hydrogenolysis of n‐hexadecane, a model compound of heavier hydrocarbons. The diesel fuel selectivity in FT synthesis can reach 60 % with a CH4 selectivity of 5 % over a Na‐type mesoporous Y‐supported cobalt catalyst with medium mean sizes of 8.4 nm (Co particles) and 15 nm (mesopores). These findings offer a new strategy to tune the product selectivity and possible interpretations of the effect of cobalt particle size and the effect of support pore size in FT synthesis.  相似文献   

11.
12.
《Chemphyschem》2003,4(10):1073-1078
We report on an IR spectroscopic study on the room‐temperature adsorption of NO on different iron(II )‐containing siliceous matrices. Fe2+ hosted inside the channels of MFI‐type zeolites (Fe‐ZSM‐5 and Al‐free Fe‐silicalite) exhibits pronounced coordinative unsaturation, as witnessed by the capability to form, at 300 K, [Fe2+(NO)], [Fe2+(NO)2] and [Fe2+(NO)3] complexes with increasing NO equilibrium pressure. Fe2+ hosted on amorphous supports (high surface area SiO2 and MCM‐41) sinks more deeply into the surface of the siliceous support and thus exhibits less pronounced coordinative unsaturation: only [Fe2+(NO)2] complexes were observed, even at the highest investigated NO equilibrium pressures. Activation at higher temperature (1073 K) of the Al‐free Fe‐silicalite sample resulted in the appearance of Fe2+ species similar to those observed on SiO2 and MCM‐41, and this suggests that local (since not detectable by X‐ray diffraction) amorphisation of the environment around Fe2+ anchoring sites occurs. The fact that this behaviour is not observed on the Fe‐ZSM‐5 sample activated at the same temperature suggests that framework Al species (and their negatively charged oxygen environment) have an important role in anchoring extraframework Fe2+ species. Such an anchoring phenomenon will prevent a random migration of iron species, with subsequent aggregation and loss of coordinative unsaturation. These observations can thus explain the higher catalytic activity of the Fe‐ZSM‐5 system in one‐step benzene to phenol conversion when compared with the parent, Al‐free, Fe‐silicalite system with similar Fe content. The nature of the support and the activation temperature can therefore be used as effective means to tune the degree of Fe coordination.  相似文献   

13.
14.
In this work, we investigated how the reductive activation of CO2 with an atomic bismuth model catalyst changes under aprotic solvation. IR photodissociation spectroscopy of mass‐selected [Bi(CO2)n]? cluster ions was used to follow the structural evolution of the core ion with increasing cluster size. We interpreted the IR spectra by comparison with density‐functional‐theory calculations. The results show that CO2 binds to a bismuth atom in the presence of an excess electron to form a metalloformate ion, BiCOO?. Solvation with additional CO2 molecules leads to the stabilization of a bismuth(I) oxalate complex and results in a core ion switch.  相似文献   

15.
Liposomes capable of generating photons of blue light in situ by triplet–triplet annihilation upconversion of either green or red light, were prepared. The red‐to‐blue upconverting liposomes were capable of triggering the photodissociation of ruthenium polypyridyl complexes from PEGylated liposomes using a clinical grade photodynamic therapy laser source (630 nm).  相似文献   

16.
17.
Iron oxide‐supported gold samples were prepared by co‐precipitation from HAuCl4 and Fe(NO3)3. The activities of the samples as CO oxidation catalysts were tested without thermal treatment and following treatments in flows of He and O2 at various temperatures. It was found that the untreated samples and those treated in a flow of He at 150 °C were more active than samples that had been treated at 400 °C in either a flow of O2 or of He. Infrared spectra recorded during CO oxidation catalysis indicate the presence of bonded CO molecules to cationic gold on all samples, whereas spectra of the least active catalysts indicate a predominant presence of Fe2+ carbonyls, which were highly stable under the conditions of our experiments. Our results indicate that in the least active samples the Fe2+‐bound CO blocks sites that would otherwise be available for oxygen activation.  相似文献   

18.
19.
20.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10?5 m ) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m ). The preorganization strategy enhances the water oxidation rate by two‐orders of magnitude to 125 s?1, as it facilitates the diffusion‐controlled rate‐limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号