首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An essentially molecular ruthenium–benzene complex anchored at the aluminum sites of dealuminated zeolite Y was formed by treating a zeolite‐supported mononuclear ruthenium complex, [Ru(acac)(η2‐C2H4)2]+ (acac=acetylacetonate, C5H7O2?), with 13C6H6 at 413 K. IR, 13C NMR, and extended X‐ray absorption fine structure (EXAFS) spectra of the sample reveal the replacement of two ethene ligands and one acac ligand in the original complex with one 13C6H6 ligand and the formation of adsorbed protonated acac (Hacac). The EXAFS results indicate that the supported [Ru(η6‐C6H6)]2+ incorporates an oxygen atom of the support to balance the charge, being bonded to the zeolite through three Ru? O bonds. The supported ruthenium–benzene complex is analogous to complexes with polyoxometalate ligands, consistent with the high structural uniformity of the zeolite‐supported species, which led to good agreement between the spectra and calculations at the density functional theory level. The calculations show that the interaction of the zeolite with the Hacac formed on treatment of the original complex with 13C6H6 drives the reaction to form the ruthenium–benzene complex.  相似文献   

2.
The chemisorption of [Ma3(CO)1 2] on silica (M = Ru and Os) and alumina (M = Os) has been studied by vibrational and X-ray absorption spectroscopies making close comparisons with model compounds. The results indicate that the first chemisorption species observed has the form [M3H(CO)10(O---O)]; the bridging hydride was observed directly for the silica systems as evidenced by the M-H-M bending vibration in the i.r. Also consistent with this structure are the EXAFS analysis of the Ru/SiOz material. This indicated an essentially equilateral ruthenium triangle and coordination to oxygen. The published low frequency Raman data on the Os/Al2Oa product was shown to match most closely with that of model compounds with a bidentate oxygen donor ligand (acac or O2CR). The tethered cluster [Os3H2(CO)9(PPh2C2H4SIL)] was found to be a relatively short lived species on a silica surface. Under ambient conditions it reacts further and the i.r., EXAFS and 31P NMR data of this species suggest that the two osmium atoms not coordinated to the tethering phosphine become involved with a bidentate site from the surface.  相似文献   

3.
Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac)2(C2H4)2. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C2H4)2(2+), tightly bonded to the surface by two Ru-O bonds at Al(3+) sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al(3+) sites; at higher loadings, some of the cis-Ru(acac)2(C2H4)2 was physisorbed. In the presence of ethylene and H2, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C2H4)2(2+) species was dissociated and captured by an Al(3+) site. Ethylene dimerization proceeded approximately 600 times faster with a cofeed of ethylene and H2 than without H2. These results provide evidence of the importance of the cooperation of the Al(3+) sites in the zeolite and the H2 in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.  相似文献   

4.
A family of HY zeolite‐supported cationic organoiridium carbonyl complexes was formed by reaction of Ir(CO)2(acac) (acac=acetylacetonate) to form supported Ir(CO)2 complexes, which were treated at 298 K and 1 atm with flowing gas‐phase reactants, including C2H4, H2, 12CO, 13CO, and D2O. Mass spectrometry was used to identify effluent gases, and infrared and X‐ray absorption spectroscopies were used to characterize the supported species, with the results bolstered by DFT calculations. Because the support is crystalline and presents a nearly uniform array of bonding sites for the iridium species, these were characterized by a high degree of uniformity, which allowed a precise determination of the species involved in the replacement, for example, of one CO ligand of each Ir(CO)2 complex with ethylene. The supported species include the following: Ir(CO)2, Ir(CO)(C2H4)2, Ir(CO)(C2H4), Ir(CO)(C2H5), and (tentatively) Ir(CO)(H). The data determine a reaction network involving all of these species.  相似文献   

5.
In the two ruthenium(II)–porphyrin–carbene complexes ­(di­benzoyl­carbenyl‐κC)(pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)­ruthenium(II), [Ru(C15H10O2)(C5H5N)(C48H36N4)], (I), and (pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)[bis(3‐tri­fluoro­methyl­phenyl)­carbenyl‐κC]­ruthenium(II), [Ru(C15H8F6)(C5H5N)(C48H36N4)], (II), the pyridine ligand coordinates to the octahedral Ru atom trans with respect to the carbene ligand. The C(carbene)—Ru—N(pyridine) bonds in (I) coincide with a crystallographic twofold axis. The Ru—C bond lengths of 1.877 (8) and 1.868 (3) Å in (I) and (II), respectively, are slightly longer than those of other ruthenium(II)–porphyrin–carbene complexes, owing to the trans influence of the pyridine ligands.  相似文献   

6.
Building upon previous work, the chemistry of [(η6-p-cymene)Ru{P(OMe)2OR}Cl2], (R=H or Me) has been extended with [H2B(mbz)2] (mbz=2-mercaptobenzothiazolyl) using different Ru precursors and borate ligands. As a result, a series of 1,3-N,S-chelated ruthenium borate complexes, for example, [(κ2-N,S-L)PR3Ru{κ3-H,S,S’−H2B(L)2}], ( 2 a – d and 2 a’ – d’ ; R=Ph, Cy, OMe or OPh and L=C5H4NS or C7H4NS2) and [Ru{κ3-H,S,S’-H2B(L)2}2], ( 3 : L=C5H4NS, 3’ : L=C7H4NS2) were isolated upon treatment of [(η6-p-cymene)RuCl2PR3], 1 a – d (R=Ph, Cy, OMe or OPh) with [H2B(mp)2] or [H2B(mbz)2] ligands (mp=2-mercaptopyridyl). All the Ru borate complexes, 2 a – d and 2 a’ – d’ are stabilized by phosphine/phosphite and hemilabile N,S-chelating ligands. Treatment of these Ru borate species, 2 a’ – c’ with various terminal alkynes yielded two different types of five-membered ruthenacycle species, namely [PR3{C7H4S2-(E)-N-C=CH(R ’ )}Ru{κ3-H,S,S ’ −H2B(L)2}], ( 4 – 4’ ; R=Ph and R ’ =CO2Me or C6H4NO2; L=C7H4NS2) and [PR3{C7H4NS-(E)-S-C=CH(R ’ )}Ru{κ3-H,S,S ’ −H2B(L)2}], ( 5 – 5’ , 6 and 7 ; R=Ph, Cy or OMe and R ’ =CO2Me or C6H4NO2; L=C7H4NS2). All these five-membered ruthenacycle species contain an exocyclic C=C moiety, presumably formed by the insertion of a terminal alkyne into the Ru−N and Ru−S bonds. The new species have been characterized spectroscopically and the structures were further confirmed by single-crystal X-ray diffraction analysis. Theoretical studies and chemical-bonding analyses established that charge transfer occurs from phosphorus to ruthenium center following the trend PCy3<PPh3<P(OPh)3<P(OMe)3.  相似文献   

7.
The reaction of Rh(C2H4)2(acac) with the partially dehydroxylated surface of dealuminated zeolite Y (calcined at 773 K) and treatments of the resultant surface species in various atmospheres (He, CO, H2, and D2) were investigated with infrared (IR), extended X-ray absorption fine structure (EXAFS), and 13C NMR spectroscopies. The IR spectra show that Rh(C2H4)2(acac) reacted readily with surface OH groups of the zeolite, leading to loss of acac ligands from the Rh(C2H4)2(acac) and formation of supported mononuclear rhodium complexes, confirmed by the lack of Rh-Rh contributions in the EXAFS spectra; each Rh atom was bonded on average to two oxygen atoms of the zeolite surface with a Rh-O distance of 2.19 A. IR, EXAFS, and 13C NMR spectra show that the ethylene ligands remained bonded to the Rh center in the supported complex. Treatment of the sample in CO led to the formation of site-isolated Rh(CO)2 complexes bonded to the zeolite. The sharpness of the nu(CO) bands in the IR spectrum gives evidence of a nearly uniform supported Rh(CO)2 complex and, by inference, the near uniformity of the mononuclear rhodium complex with ethylene ligands from which it was formed. The supported complex with ethylene ligands reacted with H2 to give ethane, and it also catalyzed ethylene hydrogenation at 294 K.  相似文献   

8.
Zeolite Hβ- and γ-Al(2)O(3)-supported mononuclear iridium complexes were synthesized by the reaction of Ir(C(2)H(4))(2)(acac) (acac is acetylacetonate) with each of the supports. The characterization of the surface species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies demonstrated the removal of acac ligands during chemisorption, leading to the formation of essentially isostructural Ir(C(2)H(4))(2) complexes anchored to each support by two Ir-O(support) bonds. Atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) images confirm the spectra, showing only isolated Ir atoms on the supports with no evidence of iridium clusters. These samples, together with previously reported Ir(C(2)H(4))(2) complexes on zeolite HY, zeolite HSSZ-53, and MgO supports, constitute a family of isostructural supported iridium complexes. Treatment with CO led to the replacement of the ethylene ligands on iridium with CO ligands, and the ν(CO) frequencies of these complexes and white line intensities in the X-ray absorption spectra at the Ir L(III) edge show that the electron density on iridium increases in the following order on these supports: zeolite HY < zeolite Hβ < zeolite HSSZ-53 ? γ-Al(2)O(3) < MgO. The IR spectra of the iridium carbonyl complexes treated in flowing C(2)H(4) show that the CO ligands were replaced by C(2)H(4), with the average number of C(2)H(4) groups per Ir atom increasing as the amount of iridium was increasingly electron-deficient. In contrast to the typical supported catalysts incorporating metal clusters or particles that are highly nonuniform, the samples reported here, incorporating uniform isostructural iridium complexes, provide unprecedented opportunities for a molecular-level understanding of how supports affect the electronic properties, reactivities, and catalytic properties of supported metal species.  相似文献   

9.
The title compound, cis‐di‐μ‐perfluoroheptanoato‐κ4O:O′‐bis[dicarbonyl(dimethyl sulfoxide‐κS)ruthenium(I)](RuRu), [Ru2(C7F13O2)2(C2H6OS)2(CO)4], is a sawhorse‐type dinuclear ruthenium complex with two bridging perfluoroheptanoate ligands, and with two dimethyl sulfoxide (DMSO) ligands in the axial positions coordinating via the S atoms. It is a new example of a compound with an aliphatic fluorinated carboxylate ligand. The Ru—Ru bond distance of 2.6908 (3) Å indicates a direct Ru—Ru interaction. The compound is an active catalyst in transvinylation of propionic acid with vinyl acetate.  相似文献   

10.
Based on data from more than 40 crystal structures of metal complexes with azo‐based bridging ligands (2,2′‐azobispyridine, 2,2′‐azobis(5‐chloropyrimidine), azodicarbonyl derivatives), a correlation between the N? N bond lengths (dNN) and the oxidation state of the ligand (neutral, neutral/back‐donating, radical‐anionic, dianionic) was derived. This correlation was applied to the analysis of four ruthenium compounds of 2,2′‐azobispyridine (abpy), that is, the new asymmetrical rac‐[(acac)2Ru1(μ‐abpy)Ru2(bpy)2](ClO4)2 ([ 1 ](ClO4)2), [Ru(acac)2(abpy)] ( 2 ), [Ru(bpy)2(abpy)](ClO4)2 ([ 3 ](ClO4)2), and meso‐[(bpy)2Ru(μ‐abpy)Ru(bpy)2](ClO4)3 ([ 4 ](ClO4)3; acac?=2,4‐pentanedionato, bpy=2,2′‐bipyridine). In agreement with DFT calculations, both mononuclear species 2 and 3 2+ can be described as ruthenium(II) complexes of unreduced abpy0, with 1.295(5)<dNN<1.320(3) Å, thereby exhibiting effects from π back‐donation. However, the abpy ligand in both the asymmetrical diamagnetic compound 1 2+ (dNN=1.374(6) Å) and the symmetrical compound 4 3+ (dNN=1.360(7), 1.368(8) Å) must be formulated as abpy.?. Remarkably, the addition of [RuII(bpy)2]2+ to mononuclear [RuII(acac)2(abpy0)] induces intracomplex electron‐transfer under participation of the noninnocent abpy bridge to yield rac‐[(acac)2Ru1III(μ‐abpy.?)Ru2II(bpy)2]2+ ( 1 2+) with strong antiferromagnetic coupling between abpy.? and RuIII (DFT (B3LYP/LANL2DZ/6‐31G*)‐calculated triplet–singlet energy separation ES=1?ES=0=11739 cm?1). Stepwise one‐electron transfer was studied for compound 1 n, n=1?, 0, 1+, 2+, 3+, by UV/Vis/NIR spectroelectrochemistry, EPR spectroscopy, and by DFT calculations. Whereas the first oxidation of compound 1 2+ was found to mainly involve the central ligand to produce an (abpy0)‐bridged Class I mixed‐valent Ru1IIIRu2II species, the first reduction of compound 1 2+ affected both the bridge and Ru1 atom to form a radical complex ( 1 +), with considerable metal participation in the spin‐distribution. Further reduction moves the spin towards the {Ru2(bpy)2} entity.  相似文献   

11.
Six ruthenium atoms are coordinated to the naphthalene-1,8-diyl ligand in the cluster [Ru6(CO)14(C10H6)(PPh)] through two Ru−C σ bonds, two η2, and two η3 interactions (section of structure depicted on the right). The complex could, therefore, serve as a model for the chemisorption of naphthalene on a step-site on a (111) metal surface.  相似文献   

12.
Four NNN tridentate ligands L1–L4 containing 2‐methoxypyridylmethene or 2‐hydroxypyridylmethene fragment were synthesized and introduced to ruthenium centers. When (HOC5H3NCH2C5H3NC5H7N2) (L2) and (HOC5H3NCH2C5H3NC6H6N3) (L4) reacted with RuCl2(PPh3)3, two ruthenium chloride products Ru(L2)(PPh3)Cl2 ( 1 ) and Ru(L4)(PPh3)Cl2 ( 2 ) were isolated, respectively. Reactions of (MeOC5H3NCH2C5H3NC5H7N2) (L1) and (MeOC5H3NCH2C5H3NC6H6N3) (L3) with RuCl2(PPh3)3 in the presence of NH4PF6 generated two dicationic complexes [Ru(L1)2][PF6]2 ( 3 ) and [Ru(L3)2][PF6]2 ( 4 ), respectively. Complex 1 reacted with CO to afford product [Ru(L2)(PPh3)(CO)Cl][Cl]. The catalytic activity for transfer hydrogenation of ketones was investigated. Complex 1 showed the highest activity, with a turnover frequency value of 1.44 × 103 h?1 for acetophenone, while complexes 3 and 4 were not active.  相似文献   

13.
《Polyhedron》1999,18(5):631-640
A group of six ruthenium(III) complexes of type [Ru(acac)(L)2]where acac=acetylacetonate anion and L=2-(arylazo)-4-methylphenolate anion or 1-(phenylazo)-2-naphtholate anion have been synthesized and characterized Structural characterization of a representative complex where L=1-(phenylazo)-2-naphtholate anionshows that the azophenolate ligands are coordinated as NO-donor ligands forming six-membered chelate rings The complexes are paramagnetic (low-spin d5S=1/2) and show rhombic ESR spectra in 1:1 dichloromethane–toluene solution at 77 K In carbon tetrachloride solution these complexes show intense LMCT transitions in the visible region together with weak ligand-field transitions in the near-IR region All the complexes display two cyclic voltammetric responses a ruthenium(III)–ruthenium(IV) oxidation in the range of 083 to 103 V vs SCE and a ruthenium(III)–ruthenium(II) reduction in the range of −024 to −052 V vs SCE Formal potentials of both the couples correlate linearly with the Hammett constant of the para substituent in the arylazo fragment of the 2-(arylazo)-4-methylphenolate ligand The ruthenimn(IV) and ruthenium(II) congeners of the [RuIII(acac)(L)2] complexes have been generated by chemical or electrochemical methods and they have been characterized by electronic spectroscopy and cyclic voltammetry.  相似文献   

14.
Substituted decarbonylation reaction of ruthenium 1,2‐naphthoquinone‐1‐oxime (1‐nqo) complex, cis‐, cis‐[Ru| ζ2‐N(O)C10‐H6O|2(CO)2] (1), with acetonitrile gave cis, cis‐[Ru | ζ2‐ N(O)C10H6O|2(CO)(NCMe)] (2). Complex 2 was fully characterized by 1H NMR, FAB MS, IR spectra and single crystal X‐ray analysis. Complex 2 maintains the coordination structure of 1 with the two naphthoquinonic oxygen atoms, as well as the two oximato nitrogen atoms located cis to each other, showing that there is no ligand rearrangement of the 1‐nqo ligands during the substitution reaction. The carbonyl group originally trans to the naphthoquinonic oxygen in one 1‐nqo ligand is left in its original position [O(5)‐Ru‐C(1), 174.0(6)°], while the other one originally trans to the oximato group of the other 1‐nqo ligand is substituted by NCMe [N(1)‐Ru‐N(3), 170.6(6)°]. This shows that the carbonyl trans to oximato group is more labile than the one trans to naphthoquinonic O atom towards substitution. This is probably due to the comparatively stronger ± back bonding from ruthenium metal to the carbonyl group trans to naphthoquinonic O atom, than the one trans to oximato group, resulting in the comparatively weaker Ru–‐CO bond for the latter and consequently easier replacement of this carbonyl. Selected coupling of phenylacetylene mediated by 2 gave a single trans‐dimerization product 3, while 2 mediated coupling reaction of methyl propiolate produced three products: one trans‐dimerization product 4 and two cyclotrimeric products 5 and 6.  相似文献   

15.
王帅  许国勤 《催化学报》2013,34(5):865-870
使用X光电子能谱(XPS)及高分辨电子能量损失谱(HREELS)研究了二氧化碳在铜表面的吸附及其光化学反应.通过实验条件控制将物理吸附及化学吸附的二氧化碳吸附物种分别分离在规整铜表面及无序铜表面上,并使用193 nm激光对其照射研究其相应的光化学反应.结果表明只有化学吸附的二氧化碳物种在光诱导下发生了解理反应,而物理吸附的二氧化碳未发生反应.  相似文献   

16.
The crystal structure of the title complex, (η6‐hexamethylbenzene)bis(trifluoromethanesulfonato‐O)(2,4,6‐trimethylanil­ine‐N)ruthenium(II), [Ru(CF3O3S)2(C12H18)(C9H13N)], is described. The complex has the classic three‐legged piano‐stool structure with a planar arene 1.667 Å from the metal, two monodentate O‐bound tri­fluoro­methane­sulfonate ligands [Ru—O 2.169 (2) and 2.174 (2) Å] and one N‐bound mesidine ligand [Ru—N 2.198 (2) Å]. The Ru—N distance is relatively long and the average Ru—O distance is relatively short when compared with previously characterized RuII complexes.  相似文献   

17.
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.  相似文献   

18.
A new complex [Ru(NO)(NO2)4(OH)Zn(PyO)2(H2O)](PyO is pyridine-N-oxide) is synthesized and structurally characterized. The new complex has the face coordination of the [Ru(NO)(NO2)4(OH)]2? anion to the Zn2+ cation similar to that in the earlier obtained complexes with other organic ligands. The methods of quantum chemistry and photoelectron spectroscopy show that the electronic structures of the [Ru(NO)(NO2)4(OH)ZnL n ] heterometallic complexes depend weakly on the nature of the ligands (L = Ph3PO, C5H5N, and C5H5N-O) coordinated to Zn2+ and are primarily determined by the electron density redistribution from the terminal nitro and nitroso groups of the ruthenium fragment to the zinc atom. The maximum change in the charge related to the nitroso group correlates with the strongest change in the energy of the occupied molecular orbital (HOMO-2 of the anion) oriented along the NO-Ru-OH coordinate.  相似文献   

19.
The dianion derived from (2Z,6Z)‐3,7‐diphenyl‐N2,N6‐di(pyridin‐2‐yl)pyrrolo[2,3‐f]indole‐2,6(1H,5H)‐diimine (H2BL), a modified BODIPY ligand precursor, is shown to be capable of bridging two metal complex fragments RuL2, L=2,4‐pentanedionato (acac?), 2,2’‐bipyridine (bpy) or 2‐phenylazopyridine (pap) in [Ru(acac)2Ru(μ‐BL)Ru(acac)2] ( 1 / 2 ), [Ru(bpy)2Ru(μ‐BL)Ru(bpy)2](ClO4)2 ([ 3 ](ClO4)2) and [Ru(pap)2Ru(μ‐BL)Ru(pap)2](ClO4)2 ([ 4 ](ClO4)2). The compounds, including a diastereoisomeric pair 1 (meso) and 2 (rac) were spectroscopically and structurally characterized. Reversible electron transfers as revealed by cyclic and differential pulse voltammetry allowed for an EPR and UV‐vis‐NIR spectroelectrochemical investigation of several neighboring charge states. Together with susceptibility measurements and TD‐DFT calculations the assignment of oxidation states reveals that 1 , 2 are diruthenium(III) species which can be oxidized or reduced by one electron whereas 3 2+ and 4 2+ contain ruthenium(II) and get reduced or oxidized mainly at the dianionic bridge ( 3 2+) or are reduced at the ancillary ligands pap ( 4 2+).  相似文献   

20.
Summary Temperature-programmed desorption (TPD) of CH4, C2H6, C2H4, and CO and temperature-programmed pulse surface reactions (TPSR) of CH4, C2H6, C2H4, CO, and CO/H2 over a Co/MWNTs catalyst have been investigated. The TPD results indicated that CH4 and C2H6 mainly exist as physisorbed species on the Co/MWNTs catalyst surface, whilst C2H4 and CO exist as both physisorbed and chemisorbed species. The TPSR results indicated that CH4 and C2H6 do not undergo reaction between room temperature and 450oC. Pulsed C2H4 can be transformed into CH4 at 400 oC whilst pulsed CO can be transformed into CO2 at 100 or 150oC. In gaseous mixtures of CO and H2 containing excess CO, the products of pulsed reaction were CH3CHO and CH3OH. When the ratio of CO and H2 was 1:2, pulsed CO and H2 were transformed into CH3CHO, CH3OH and CH4. In H2 gas flow, pulsed CO was transformed into a mixture of CH3CHO and CH4 between 200 and 250oC and was transformed into CH4 only above 250oC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号