首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
秦谊  王建民  王丽丽  徐泉 《光学技术》2007,33(4):557-560
卫星激光通信捕获、跟踪、瞄准(ATP)需要端机具备有微弧度(μrad)量级的高精度跟踪能力。如何检验通信端机的这一特性是一个很重要的问题。设计了一套端机跟瞄精度测试装置。装置模拟入射光方向的偏转,端机跟踪从偏转方向发出的回馈信标光。通过测量回馈光远场光斑的位置变化可以得到端机的跟瞄精度。测试实验表明,当入射光方向的变化小于4μrad,测试频率在0~250Hz时,测试系统的精度可达到0.2μrad。此项工作对卫星激光通信的光链路通信的研究以及对端机性能的整体评估具有重要意义。  相似文献   

2.
秦谊  王建民  王丽丽  徐泉 《光学技术》2007,33(5):658-661
卫星激光通信需要进行端机远场模拟及远场测试技术研究。在室内短距离模拟远场分布的测试系统中,可以采用透镜变换,在透镜焦平面处得到远场分布。实际测试时引入点光源及平面反射镜,保证焦面位置确定的准确性。模拟卫星激光通信端机平行出射光的远场光斑,经实验检测,光斑第一、二、三级暗纹直径与远场光斑理论值比较的相对误差均小于5%。这表明,该方案可以准确模拟和测试端机远场。该研究工作对卫星激光通信捕捉概率的研究、通信研究、光链路功率的实测核准以及端机性能的整体评估有重要意义。  相似文献   

3.
A hybrid OFDM–IsOWC system incorporating diverse modulation schemes like optical double side band (ODSB), optical tandem side band (OTSB) and optical single side band (OSSB) is carried out to optimize a long reach high speed inter-satellite link (ISL) with acceptable SNR and BER. The proposed system is also reported under the influence of antenna efficiency and pointing error at varied values of power levels. Simulations point toward that the proposed hybrid OFDM–OSSB–IsOWC transmission system promises significantly enhanced ISL link compared to conventional IsOWC systems.  相似文献   

4.
讨论了基于量子关联的星间链路工作频段,阐明了量子星间链路的体制优势.然后在现有星间链路研究的基础上,推导了量子星间链路的关联度和信号损耗及制备增益间的关系.并讨论了量子星间链路的网络架构.  相似文献   

5.
李轩  赵尚弘  朱子行  韩磊  赵静 《应用光学》2013,34(3):547-552
针对外调制星间微波光子链路输出信噪比优化问题,建立了基于双电极马赫 曾德尔调制器的强度调制直接探测星间微波光子链路模型,通过优化调制器调制方式来提高链路性能。用数值模拟方法得到了单边带、双边带和推挽式3种调制方式下链路输出信噪比,利用曲面投影法求得了最优调制方式时一定信噪比要求下发射端所需最小光放大器增益和对应的调制器直流偏置相位。结果表明:相同输入射频信号功率和发射光功率情况下,双边带调制输出信噪比比单边带调制高3 dB,低直流偏置相位推挽调制可以进一步优化输出信噪比。输入射频信号功率为-20 dBm,输出信噪比为17.3 dB时,所需最小光放大器增益为43.9 dB,对应的直流偏置相位为0.87。  相似文献   

6.
在大气信道激光传输中,大气湍流对系统性能会产生较大影响,主要体现为降低传输速率和增加误码率。在具有信道互易性的双向激光传输链路中,两终端光斑信号强度的变化相关,可以在终端提取信道状态信息,以对信道影响进行补偿,从而提高传输速率。本文首先在弱湍流条件下,根据Rytov近似理论推导了平面波双向传输链路接收到的光斑信号的相关系数与传输路径的关系,并给出解析式。结果表明,两终端接收的光斑信号的光通量具有相关性,且相关系数与传输路径有关。进一步搭建了双向收发共轴激光传输系统,并进行了外场试验,试验结果不仅验证了双向大气信道激光传输链路具有互易性,且两接收端光斑信号光强的实时变化趋势相同。本文结论对实现大气信道高速率、低误码率激光传输具有重要意义。  相似文献   

7.
Free-space optics (FSO) has the combined features of most dominated telecommunication technologies: wireless and fiber optics. Many of the aspects of FSO are related to fiber optics with an important difference of transmission medium which is air/free space rather than the glass of the fiber-optic cable. Inter-satellite optical wireless communication systems (IsOWC), one of the important applications of FSO/WSO technology, will be deployed in space in the near future as such systems provide a high bandwidth, small size, light weight, low power and low cost alternative to present microwave satellite systems. In this paper, we have designed a model of IsOWC system using OPTI-SYSTEM™ simulator to establish an inter-satellite link (ISL) between two satellites estranged by a distance of 1000 km at data rate of 2.5 Gbps which is not reported in previous investigated works.  相似文献   

8.
Refractive index inhomogeneities of the turbulent air cause wave-front distortions of optical waves propagating through the atmosphere, leading to such effects as beam spreading, beam wander, and intensity fluctuations (scintillations). These distortions are responsible for severe signal fading in free-space optical communications systems and therefore compromise link reliability. Wave-front distortions can be mitigated, in principle, with adaptive optics, i.e., real-time wave-front control, reducing the likeliness of signal fading. However, adaptive optics technology, currently primarily used in astronomical imaging, needs to be adapted to the requirements of free-space optical communication systems and their specific challenges.In this chapter we discuss a non-conventional adaptive optics approach that has certain advantages with respect to its incorporation into free-space optical communication terminals. The technique does not require wave-front measurements, which are difficult under the strong scintillation conditions typical for communication scenarios, but is based on the direct optimization of a performance quality metric, e.g., the communication signal strength, with a stochastic parallel gradient descent (SPGD) algorithm.We describe an experimental adaptive optics system that consists of a beam-steering and a higher-resolution wave-front correction unit with a 132-actuator MEMS piston-type deformable mirror controlled by a VLSI system implementing the SPGD algorithm. The system optimizes the optical signal that could be coupled into a single-mode fiber after propagating along a 2.3-km near-horizontal atmospheric path. We investigate characteristics of the performance metric under different atmospheric conditions and evaluate the effect of the adaptive system. Experiments performed under strong scintillation conditions with beam-steering only as well as with higher-resolution wave-front control demonstrate the mitigation of wave-front distortions and the reduction of signal fading.  相似文献   

9.
刘璐  王江波  俞水清  汤俊雄 《光学学报》2004,24(12):590-1594
提出级联佛克脱型原子滤光器(Linked VADOF)的新构想。从理论上分析并计算了级联佛克脱型原子滤光器的透射谱。结果表明,级联佛克脱型原子滤光器将佛克脱型原子滤光器的多峰改造为单峰结构,具有比佛克脱型原子滤光器更窄的线宽和更高的噪声抑制比。将这种新型结构应用于激光信标锁频。该锁频方案提高了信标光频率的稳定性。在此基础上,给出了发射端采用级联佛克脱型原子滤光器锁频,接收端采用法拉第型原子滤光器(FADOF)滤光的新型卫星激光链路系统。外场初步联调实验表明了该系统的可行性。  相似文献   

10.
The mid-wave IR (MWIR) spectral band extending from 3 to 5 microns is considered to be a low loss atmospheric window. The MWIR wavelengths are eye safe and are attractive for several free-space applications including remote sensing of chemical and biological species, hard target imaging, range finding, target illumination, and free-space communications. Due to the nature of light-matter interaction characteristics, MWIR wavelength based systems can provide unique advantages over other spectral bands for these applications. The MWIR wavelengths are found to effectively penetrate natural and anthropogenic obscurants. Consequently, MWIR systems offer increased range performance at reduced power levels. Free-space, line-of-sight optical communication links for terrestrial as well as space based platforms using MWIR wavelengths can be designed to operate under low visibility conditions. Combined with high-bandwidth, eye-safe, covert and jam proof features, a MWIR wavelength based optical communication link could play a vital role in hostile environments. A free-space optical communication link basically consists of a transmitter, a receiver and a scheme for directing the beam towards a target. Coherent radiation in the MWIR spectral band can be generated using various types of lasers and nonlinear optical devices. Traditional modulation techniques are applicable to these optical sources. Novel detector and other subcomponent technologies with enhanced characteristics for a MWIR based system are advancing. Depending on the transmitter beam characteristics, atmospheric conditions may adversely influence the beam propagation and thereby increasing the bit error rate. For satisfactory transmission over a given range, the influence of atmosphere on beam propagation has to be analyzed. In this chapter, salient features of atmospheric modeling required for wavelength selection and performance prediction is presented. Potential optical sources and detectors for building a practical MWIR communication link are surveyed. As an illustration, the design configuration and experimental results of a recently demonstrated free-space, obscurant penetrating optical data communication link suitable for battlefield applications is discussed. In this case, the MWIR wavelength was derived using an all solid-state, compact, optical parametric oscillator device. With this device, weapon codes pertaining to small and large weapon platforms were transmitted over a range of 5 km. Furthermore, image transmission through light fog, accomplished using this hardware, is also presented. Advances in source and detector technologies are contributing to the development of cost effective systems compatible with various platforms requirements. In coming years, MWIR wavelengths are anticipated to play a vital role in various human endeavors.  相似文献   

11.
The implementation of the subcarrier multiplexing (SCM) as the signaling format has been extensively researched in various analog and digital lightwave based broadband applications because of its promising versatility, cost effectiveness, convenient and simple offerings. However performance degradation is a matter of serious concern in such multi-channel intensity modulation-direct detection (IM-DD) systems caused by inter-modulation distortion (IMD) mechanism. In this paper the impact of key operational and physical parameters of a laser source on an IMD dominated two-tone IM-DD SCM system has been investigated which can thereby be exploited favorably to develop a reasonably IMD immune optical link.  相似文献   

12.
We present a quantum-correlation-based free-space optical(FSO) link over 250 m using an outdoor active reflector 125 m from the transceiver station. The performance of free-space optical communication can be significantly degraded by atmospheric turbulence effects, such as beam wander and signal fluctuations. We used a 660 nm tracking laser to reduce atmospheric effects, by analyzing the fast beam wander and slow temporal beam drift, using this information to correct the quantum channel alignment of the 810 nm signal photons. In this work, the active reflector consisted of a mirror, a 6-axis hexapod stage, and a long-range wireless bridge. The slow drift of the beam path due to outdoor temperature changes was steered and controlled using wireless optical feedback between the receiver units and the active reflector. Our work provides useful knowledge for improved control of beam paths in outdoor conditions, which can be developed to ensure high quality quantum information transfer in real-world scenarios, such as an unmanned FSO link for urban quantum communication or retro-reflective quantum communication links.  相似文献   

13.
Abstract

In this article, performance improvement of a free-space optical communication link with spatial diversity is evaluated for coherent (sub-carrier BPSK and sub-carrier QPSK) and non-coherent (OOK and Q-PPM) modulation schemes in an atmospheric turbulence fading channel. Based on Kolmogorov's theory, the link performance characterized by the signal-to-noise ratio or bit error rate is evaluated for both modulation schemes. It is observed that there is performance improvement with the increase in the order of transmit diversity for all the modulation schemes. Sub-carrier BPSK modulation outperforms the other modulation schemes in terms of the minimum signal-to-noise ratio requirement for a given bit error rate. Also, the effect of correlation among different transmitting antenna beams on the link performance is analyzed.  相似文献   

14.
解万财  黄素娟  邵蔚  朱福全  陈木生 《物理学报》2017,66(14):144102-144102
光学涡旋的产生、传输与应用是当前光学领域的研究热点之一.光学涡旋具有轨道角动量,作为一种全新的自由度,丰富了目前光通信的方式.利用面向目标的共轭对称延拓傅里叶计算全息技术,基于空间光调制器,用单束激光直接产生混合光模式阵列进行编码通信.采用由单光涡和复合光涡构成的4种易于识别的模式组成2×2混合光模式阵列,进行灰度图像的编码传输.在接收端提取混合光模式阵列图的信息并进行解码,实现零误码的灰度图像再现.以传输一幅Lena图像为例,使用2×2混合光模式阵列进行编码通信,相对于传统单光涡编码通信,其信息容量可增加4倍.该方法光路简单易行,可扩展性强,进一步拓展使用4×4混合光模式阵列进行编码通信,信息容量提升16倍.提出的混合光模式阵列编码通信方法对于提高信息传输容量具有重要价值.  相似文献   

15.
We describe two free-space optical links for multichannel optical interconnects. The targeted aggregate data rate is 240 Gb/s. In one implementation we use a unique implementation of telecentric optics and achieved an optical link that is simple, robust, and modular. We describe a simple, inexpensive telecentric lens that can accommodate all optical channels within a 1-mm-diameter sweet zone. We also describe the performance of an optical link with a 4×4 array of VCSELs and matching detectors. The integrity of the optical link is not significantly degraded with a>±2 mm translational misalignment between the VCSEL and detector arrays. With the telecentric optical link, we need only two low-bandwidth, single-axis active servomechanisms to compensate for static tilt and possibly low-frequency thermally-driven shift between the transmitter and receiver arrays. In the other implementaion we use two matching arrays of 1×12 optical fibers. Data are coupled optically through an air gap of 2 mm by means of a pair of collimating microlens arrays that are aligned to one another via precision mechanical subassemblies. We describe a simple, inexpensive, and robust mechanical coupling for the optical link achieved by using miniature high-flux magnets.  相似文献   

16.
Low earth orbit satellite constellations using laser inter-satellite links are recognized to be capable to satisfy the increasing broadband communication demands. However, Doppler in inter-satellite laser communications can degrade the performance of the optical space network. It is crucial to study the Doppler performance on the high precision system. The expression of Doppler wavelength shift for multiple hops laser inter-satellite links is proposed in the paper. The calculation of Doppler wavelength shift in multiple hops ISL is studied with the consideration of location, motion and onboard characters of the satellites. Theoretical and numerical analysis show different routing way between two certain distant satellites will lead to different Doppler wavelength shift and signal transmitting time, and the variation of Doppler wavelength shift is mostly depend on the number of laser inter-satellite links hops; reasonable onboard time delay can augment signal transmitting time with little influence to the Doppler wavelength shift. It is hoped that the study can help the routing selection of the optical space network and system compensation.  相似文献   

17.
Optical Review - To reduce the effect of atmospheric turbulence and stabilize the optical link in free-space optical (FSO) communications, we have proposed to use an optical duplicate system (ODS)...  相似文献   

18.
Abstract

Free-space optic links are degraded by such weather conditions as rain, fog, and atmospheric scintillation. The inherent advantages of free-space optic communication—providing higher data rates, security, and easy redeployment ability—motivate the avoidance of switching over free-space optic links to low bandwidth radio frequency links. This article establishes viable alternatives over free-space optics/radio frequency hybrid links to achieve higher capacity operation exploiting on–off keying and multiple pulse position modulation schemes with variable data rates to overcome the effect of fading due to adverse weather conditions. Results of an experimental free-space optical link at 1,550 nm are presented.  相似文献   

19.
Free Space Optical (FSO) links can be used to setup FSO communication networks or to supplement radio and optical fiber networks. Hence, it is the broadband wireless solution for closing the “last mile” connectivity gap throughout metropolitan networks. Optical wireless fits well into dense urban areas and is ideally suited for urban applications. This paper gives an overview of free-space laser communications. Different network architectures will be described and investigated regarding reliability. The usage of “Optical Repeaters”, Point-to-Point and Point-to-Multipoint solutions will be explained for setting up different network architectures. After having explained the different networking topologies and technologies, FSO applications will be discussed in section 2, including terrestrial applications for short and long ranges, and space applications. Terrestrial applications for short ranges cover the links between buildings on campus or different buildings of a company, which can be established with low-cost technology. For using FSO for long-range applications, more sophisticated systems have to be used. Hence, different techniques regarding emitted optical power, beam divergence, number of beams and tracking will be examined. Space applications have to be divided into FSO links through the troposphere, for example up- and downlinks between the Earth and satellites, and FSO links above the troposphere (e.g., optical inter-satellite links). The difference is that links through the troposphere are mainly influenced by weather conditions similar but not equal to terrestrial FSO links. Satellite orbits are above the atmosphere and therefore, optical inter-satellite links are not influenced by weather conditions. In section 3 the use of optical wireless for the last mile will be investigated and described in more detail. Therefore important design criteria for connecting the user to the “backbone” by FSO techniques will be covered, e.g., line of sight, network topology, reliability and availability. The advantages and disadvantages of different FSO technologies, as well as the backbone technology are discussed in this respect. Furthermore, the last mile access using FSO will be investigated for different environment areas (e.g., urban, rural, mountain) and climate zones. The availability of the FSO link is mainly determined by the local atmospheric conditions and distance and will be examined for the last mile. Results of various studies will complete these investigations. Finally, an example for realizing a FSO network for the last mile will be shown. In this example FSO transmitters with light emitting diodes (LED) instead of laser diodes will be described. By using LEDs, problems with laser- and eye safety are minimized. Some multimedia applications (like video-conferences, live TV-transmissions, etc.) will illustrate the range of applications for FSO last mile networks.  相似文献   

20.
This paper has investigated the transmission performance of the single sideband (SSB) optical millimeter (mm)-wave with signal carried by the sideband in BPSK format in duplex radio-over-fiber (RoF) system theoretically and numerically. The SSB optical mm-wave signal is generated by a LiNbO3 Mach–Zehnder modulator and there exists an optimal modulation index to generate the SSB optical mm-wave with a maximal RF photocurrent. The SSB optical mm-wave is much suitable for the duplex ROF link with the uplink lightwave recovered from the downlink because the optical carrier carries no signal. In such a duplex RoF link, although there are the spurs on the optical carrier, they have little influence on the downlink and the uplink signal even if the modulation index is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号