首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We present the efficient synthesis of a new molecular spoked‐wheel structure ( MSW‐3 ). Two derivatives with diameters of approximately 4 nm have been prepared. By highlighting the importance of pseudo‐high‐dilution conditions during cyclization, we were able to access the compounds on a several hundred milligram scale. In addition to the standard characterization (NMR spectroscopy, MS), we describe a detailed investigation of the optical properties of the fluorescent MSWs by comparison with appropriate model chromophores. Furthermore, a comprehensive study of the structure in solution by means of light‐ and X‐ray scattering experiments has been conducted. Scanning tunneling microscopy (STM) revealed the two‐dimensional organization of the molecules on highly oriented pyrolytic graphite and emphasized the spoked‐wheel structure. The diameter of these molecules measured by small‐angle X‐ray scattering is in very good agreement with that obtained from STM and matches the results of molecular modeling. This confirms the rigidifying effect of the spokes, which results in highly shape‐persistent nanometer‐sized oblate organic compounds.  相似文献   

4.
5.
Triangular zigzag nanographenes, such as triangulene and its π‐extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high‐spin networks with long‐range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on‐surface synthesis and a proof‐of‐principle experimental study of magnetism in covalently bonded triangulene dimers. On‐surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4‐phenylene spacer. The chemical structures of the dimers have been characterized by bond‐resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   

6.
7.
The covalent linking of molecular building blocks on surfaces enables the construction of specific molecular nanostructures of well‐defined shape. Molecular nodes linked to various entities play a key role in such networks, but represent a particular challenge because they require a well‐defined arrangement of different building blocks. Herein, we describe the construction of a chemically and geometrically well defined covalent architecture made of one central node and three molecular wires arranged in a nonsymmetrical way and thus encoding different conjugation pathways. Very different architectures of either very limited or rather extended size were obtained depending on the building blocks used for the covalent linking process on the Au(111) surface. Electrical measurements were carried out by pulling individual molecular nodes with the tip of a scanning tunneling microscope. The results of this challenging procedure indicate subtle differences if the nodes are contacted at inequivalent termini.  相似文献   

8.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

9.
A two‐dimensional surface covalent organic framework, prepared by a surface‐confined synthesis using 4,4′‐azodianiline and benzene‐1,3,5‐tricarbaldehyde as the precursors, was used as a host network to effectively immobilize arylenevinylene macrocycles (AVMs). Thus AVMs could be separated from their linear polymer analogues, which are the common side‐products in the cyclooligomerization process. Scanning tunneling microscopy investigations revealed efficient removal of linear polymers by a simple surface binding and solvent washing process.  相似文献   

10.
Two‐dimensional metal–organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene‐4,5,9,10‐tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of an extended metal–organic supramolecular structure. Each copper adatom coordinates to two ketone ligands of two neighbouring PTO molecules, forming chains that are linked together into large islands through secondary van der Waals interactions. Deposition of iron atoms leads to a transformation of this assembly resulting from the substitution of the metal centres. Density functional theory calculations reveal that the driving force for the metal substitution is primarily determined by the strength of the ketone–metal bond, which is higher for Fe than for Cu. This second class of nanostructures displays a structural dependence on the rate of iron deposition.  相似文献   

11.
12.
《化学:亚洲杂志》2017,12(19):2558-2564
The on‐surface self‐assembled behavior of four C 3‐symmetric π‐conjugated planar molecules ( Tp , T12 , T18 , and Ex ) has been investigated. These molecules are excellent building blocks for the construction of noncovalent organic frameworks in the bulk phase. Their hydrogen‐bonded 2D on‐surface self‐assemblies are observed under STM at the solid/liquid interface; these structures are very different to those in the bulk crystal. Upon combining the results of STM measurements and DFT calculations, the formation mechanism of different assemblies is revealed; in particular, the critical role of hydrogen bonding in the assemblies. This research provides us with not only a deep insight into the self‐assembled behavior of these novel functional molecules, but also a convenient approach toward the construction of 2D multiporous networks.  相似文献   

13.
The synthesis of a series of NiII–salen‐based complexes with the general formula of [Ni(H2L)] (H4L=R2N,N′‐bis[R1‐5‐(4′‐benzoic acid)salicylidene]; H4L1: R2=2,3‐diamino‐2,3‐dimethylbutane and R1=H; H4L2: R2=1,2‐diaminoethane and R1=tert‐butyl and H4L3: R2=1,2‐diaminobenzene and R1=tert‐butyl) is presented. Their electronic structure and self‐assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self‐assembly through hydrogen bonding. In addition, other substituents, that is, tert‐butyl and diamine bridges (2,3‐diamino‐2,3‐dimethylbutane, 1,2‐diaminobenzene or 1,2‐diaminoethane), were used to tune the two‐dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self‐assemble into three different 2D nanoarchitectures at the solid–liquid interface on graphite. Two structures are porous and one is close‐packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized  相似文献   

14.
Imine COF (covalent organic framework) based on the Schiff base reaction between p‐phenylenediamine (PDA) and benzene‐1,3,5‐tricarboxaldehyde (TCA) was prepared on the HOPG‐air (air=humid N2) interface and characterized using different probe microscopies. The role of the molar ratio of TCA and PDA has been explored, and smooth domains of imine COF up to a few μm are formed for a high TCA ratio (>2) compared to PDA. It is also observed that the microscopic roughness of imine COF is strongly influenced by the presence of water (in the reaction chamber) during the Schiff base reaction. The electronic property of imine COF obtained by tunneling spectroscopy and dispersion corrected density functional theory (DFT) calculation are comparable and show semiconducting nature with a band gap of ≈1.8 eV. Further, we show that the frontier orbitals are delocalized entirely over the framework of imine COF. The calculated cohesive energy shows that the stability of imine COF is comparable to that of graphene.  相似文献   

15.
We have systematically investigated the self‐assembled monolayers of seven bimolecular mixtures of square‐shaped pyridinophanes and cyclophanes bearing alkoxy or alkoxycarbonyl substituents in the presence of the tropylium ion as a marker of pyridinophanes at liquid/graphite interfaces by means of scanning tunnelling microscopy (STM). The purpose of this work was to elucidate the mixing behaviour of these macrocycles highlighting the formation of one‐ or two‐dimensionally ordered square tilings consisting of alternating alignments of different macrocycles as a result of attractive dipole–dipole or hydrogen‐bonding interactions; four co‐crystals differing in the dimensionality of the ordering of pyridinophane and cyclophane were observed. The different modes of interaction between the functional groups (ether or carbonyl group) in the side‐chains of the pyridinophanes and cyclophanes lead to the formation of co‐crystals with dimensionally different orderings of the two macrocycles. These observations revealed that a slight modification of the molecular structure may dramatically change the mixing behaviour and structures of the co‐crystals.  相似文献   

16.
17.
18.
Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase‐controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related to their size and shape, but also phase‐dependent. Herein, a facile method for the synthesis of phase‐pure, microsized, two‐dimensional (2D) CuSe nanosheets with an average thickness of approximately 5 nm is demonstrated. These hexagonal‐phased CuSe nanosheets were transformed into cubic‐phased Cu2?xSe nanosheets with the same morphology simply by treatment with heat in the presence of CuI cations. The phase transformation, proposed to be a template‐assisted process, can be extended to other systems, such as CuS and Cu1.97S nanoplates. Our study offers a new method for the phase‐controlled preparation of 2D nanomaterials, which are not readily accessible by conventional wet‐chemical methods.  相似文献   

19.
Within the last two decades, dynamic covalent chemistry (DCC) has emerged as an efficient and versatile strategy for the design and synthesis of complex molecular systems in solution. While early examples of supramolecularly assisted covalent synthesis at surfaces relied strongly on kinetically controlled reactions for post‐assembly covalent modification, the DCC method takes advantage of the reversible nature of bond formation and allows the generation of the new covalently bonded structures under thermodynamic control. These structurally complex architectures obtained by means of DCC protocols offer a wealth of solutions and opportunities in the generation of new complex materials that possess sophisticated properties. In this focus review we examine the formation of covalently bonded imine‐based discrete nanostructures as well as one‐dimensional (1D) polymers and two‐dimensional (2D) covalent organic frameworks (COFs) physisorbed on solid substrates under various experimental conditions, for example, under ultra‐high vacuum (UHV) or at the solid–liquid interface. Scanning tunneling microscopy (STM) was used to gain insight, with a sub‐nanometer resolution, into the structure and properties of those complex nanopatterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号