首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Carbon nanotube (CNT) threads are a type of CNT arrays that consist of super long CNTs. CNT threads inherit the advantages of CNTs, while avoiding the potential toxicity caused by individual CNTs. Electrodes based on CNT threads were fabricated and used for simultaneous detection of trace levels of Cu2+, Pb2+ Cd2+ and Zn2+ by anodic stripping voltammetry (ASV). The detection limits are 0.27 nM, 1.5 nM, 1.9 nM and 1.4 nM for Cu2+, Pb2+, Cd2+ and Zn2+, respectively, in 0.1 M acetate buffer pH 4.5. The CNT thread electrode gives well‐defined, reproducible and sharp stripping signals for individual and simultaneous detection of heavy metals.  相似文献   

2.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

3.
A quercetin monolayer has been prepared on top of the self‐assembled 3‐mercaptopropionic acid (MPA) layer for the copper ion determination. Cu2+ ions are readily accumulated on this modified electrode through the complex formation and electrochemically detected. With a quercetin layer, the redox process of Cu2+ became more reversible than at the MPA‐modified electrode. Complexation sites in MPA and quercetin were occupied within five min when the electrode was immersed in 10 μM Cu2+ solution. The MPA and quercetin layers were stable enough to allow repeated EDTA treatment to remove adsorbed Cu2+ for the surface regeneration. Only 7% decrease was found after ten times regeneration and use. Linear current response was found over the concentration range of 1 nM and 10 μM with detection limit of 0.1 nM. Common interfering ions such as Cd2+, Zn2+, and Fe2+/3+ did not show any electrochemical response in the potential range of Cu2+ determination.  相似文献   

4.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by square‐wave anodic stripping voltammetry (SWASV) using a bismuth nanoparticle modified boron doped diamond (Bi‐BDD) electrode. Bi deposition was performed in situ with the analytes, from a solution of 0.1 mM Bi(NO3)3 in 0.1 M HClO4 (pH 1.2), and gave detection limits of 1.9 μg L?1 and 2.3 μg L?1 for Pb(II) and Cd(II) respectively. Pb2+ and Cd2+ could not be detected simultaneously at a bare BDD electrode, whilst on a bulk Bi macro electrode (BiBE) the limits of detection for the simultaneous determination of Pb2+ and Cd2+ were ca. ten times higher.  相似文献   

5.
《Electroanalysis》2017,29(8):1903-1910
This paper describes the electrochemical behaviors of Cd2+ and Pb2+ on the proposed mesoporous carbon microspheres/mefenamic acid/nafion modified glassy carbon electrode (MC/MA/Nafion/GC) studied by square wave anodic stripping voltammetry (SWASV). The prepared material is characterized by XRD, SEM, FTIR, RAMAN and BET analysis. Experimental parameters, such as the deposition potential and time, the pH value of buffer solution were optimized. Under the optimized conditions, the electrode responded linearly to Cd2+ and Pb2+ in the concentration range from 50 to 300 nM, and the detection limits were 24.2 and 11.26 nM respectively. The sensitivity determined was 0.0623 μA/nM (Cd2+) and 0.192 μA/nM (Pb2+). Multiple metal ion detection with clear demarcation of peaks was produced by the electrode. Moreover, the modified electrode has possessed good selectivity and reproducibility of Cd2+ and Pb2+ detection. We also investigated the interference of various anions and surfactants for the detection of Cd2+ and Pb2+ ions. Finally the modified electrode was used to detect the presence of metal ions in practical samples and the results obtained are comparatively good with respect to AAS.  相似文献   

6.
Anodic stripping voltammetry (ASV) determination of Pb2+, Cd2+, and Zn2+ was done using metal catalyst free carbon nanotube (MCFCN) electrodes. Osteryoung square wave stripping voltammetry (OSWSV) was selected for detection. The MCFCNTs are synthesized via Carbo Thermal Carbide Conversion method which leads to residual transition metal free in the CNT structure. The new material shows very good results in detecting heavy metal ions, such as Pb2+, Cd2+, and Zn2+. The calculated limits of detection were 13 nM, 32 nM and 50 nM for Pb2+, Cd2+ and Zn2+, respectively with a deposition time of 150 s.  相似文献   

7.
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with ordered mesoporous carbon (OMC), 2‐mercaptoethanesulfonate (MES)‐tethered polyaniline (PANI) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry (DPASV) are presented here. The morphology and electrochemical properties of the fabricated electrode were respectively characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Experimental parameters such as PANI disposition, preconcentration potential, preconcentration time and bismuth concentration were optimized. Under optimum conditions, the fabricated electrode exhibited linear calibration curves ranged from 1 to 120 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.26 nM for Cd2+ and 0.16 nM for Pb2+ (S/N=3), respectively. Additionally, repeatability, reproducibility, interference and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for the development of other new sensors for heavy metal determination.  相似文献   

8.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by linear sweep anodic stripping voltammetry (LSASV) using an antimony nanoparticle modified boron doped diamond (Sb‐BDD) electrode. Sb deposition was performed in situ with the analytes, from a solution of 1 mg L?1 SbCl3 in 0.1 M HCl (pH 1). Pb2+ inhibited the detection of Cd2+ during simultaneous additions at the bare BDD electrode, whereas in the presence of antimony, both peaks were readily discernable and quantifiable over the linear range 50–500 μg L?1.  相似文献   

9.
A sensitive mercury‐free lead (Pb2+) sensor has been proposed based on an ordered mesoporous carbon and Nafion composite film (OMC/Nafion) coated glassy carbon electrode. The analysis of Pb2+ using anodic stripping voltammetry (ASV) includes two steps. Pb2+ ions are firstly reduced and deposited on the electrode surface in a Pb2+ solution (10 mL) during a preconcentration step biased at ?1.0 V, followed by a measurement step by differential pulse voltammetry (DPV) within the potential range of ?0.8 to ?0.3 V (scan rate: 20 mV/s, frequency: 20 Hz, amplitude: 50 mV, pulse width: 50 ms). Linear calibration curve was found to be from 20 nM to 2 μM for Pb2+ with a sensitivity of 17.4±1.38 μA/μM after a 5‐min of preconcentration. The detection limit was estimated to be around 4.60±0.12 nM at the signal to noise ratio of 3. Reproducibility (RSD%) was found to be 3.0% for a single sensor with eight measurements and 4.3% for five sensors prepared with identical procedures. The practical application of the proposed lead sensor was verified by determination of trace level of Pb2+ in tap water sample.  相似文献   

10.
《Analytical letters》2012,45(10):1746-1757
Bifunctional combination of carbon nanotubes and ionophore is introduced for anodic stripping analysis of lead (Pb2+). Carbon nanotubes are employed to improve the detection sensitivity due to their excellent electrical conductivity and strong adsorption ability. An ionophore is utilized for its excellent selectivity toward Pb2+. The proposed carbon nanotubes/ionophore modified electrode shows improved sensitivity and selectivity for Pb2+. Low detection limit (1 nM), wide linear range (5 nM–8 µM) and excellent selectivity over other metal ions (Cd2+, Cu2+, and Hg2+) was obtained. The practical application has been carried out for determination of Pb2+ in real water samples.  相似文献   

11.
A new chemically modified bismuth film electrode coated with an ionic liquid [(1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB)] and Nafion was developed for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Compared with conventional bismuth film electrodes, this electrode exhibited greatly improved electrochemical activity for Pb2+ and Cd2+ detection due to the unique properties of Nafion polymer and ionic liquid. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 10–120 µg L?1 with a detect limit of 0.2 µg L?1 for Pb2+, and 0.5 µg L?1 for Cd2+ for 120s deposition. High reproducibility was indicated from the relative standard deviations (1.9 and 2.5 %) for nine repetitive measurements of 20 µg L?1 Pb2+ and Cd2+, respectively. In addition, the surface characteristics of the modified BiFE were investigated by scanning electron microscopy (SEM), and results showed that fibril‐like bismuth nanostructures were formed on the porous Nafion polymer matrix. Finally, the developed electrode was applied to determine Pb2+ and Cd2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

12.
A nanocomposite consisting of multiwalled carbon nanotubes wrapped with hydroxyapatite (HA/MWCNTs) was used in the construction of a new composite paste electrode using an ionic liquid as the binder. The stable surface in aqueous solutions as well as the high sorptive behaviors towards heavy metal ions and the favorable charge transfer make the electrode highly efficient especially for stripping or adsorptive analysis. The analysis of Pb2+ as a model of heavy metal ions has been performed. Good sensitivity, detection limit, selectivity and reproducibility were obtained for the suggested sensor. The linear range of the electrode response covered four orders of magnitude (1 nM–10 µM), in two linear ranges. The obtained detection limit for Pb2+ was 2×10?11 M.  相似文献   

13.
Here we investigate the use of 3D printed graphene/poly(lactic acid) (PLA) electrodes for quantifying trace amounts of Hg, Pb, and Cd. We prepared cylindrical electrodes by sealing a 600 μm diameter graphene/PLA filament in a pipette tip filled with epoxy. We characterized the electrodes using scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry in ferrocene methanol. The physical characterization showed a significant amount of disorder in the carbon structure and the electrochemical characterization showed quasi‐reversible behavior without any electrode pretreatment. We then used unmodified graphene/PLA electrode to quantify Hg, and Pb and Cd in 0.01 M HCl and 0.1 M acetate buffer using square wave anodic stripping voltammetry. We were able to quantify Hg with a limit of detection (LOD) of 6.1 nM (1.2 ppb), but Pb and Cd did not present measurable peaks at concentrations below ~400 nM. We improved the LODs for Pb and Cd by depositing Bi microparticles on the graphene/PLA and, after optimization, achieved clear stripping peaks at the 20 nM level for both ions (4.1 and 2.2 ppb for Pb2+ and Cd2+, respectively). The results obtained for all three metals allowed quantification below the US Environmental Protection Agency action limits in drinking water.  相似文献   

14.
In this work, an ultrasensitive platform for the detection of cadmium (Cd2+) combining the nafion–graphene nanocomposite film with differential pulse anodic stripping voltammetry (DPASV) analysis was presented. It is found that this sensing platform exhibits enhanced response to the determination of the Cd2+ and has been used to determine the Cd2+ in real sample with good recovery.  相似文献   

15.
《Electroanalysis》2006,18(2):169-176
Constant current chronopotentiometric stripping analysis using adsorptive accumulation and negative stripping current (AdSCP) was applied for the study of behavior of rabbit liver Cd‐Zn and Zn metallothionein (Cd‐Zn‐MT, ZnMT) on hanging mercury drop electrode. Electrochemically inert or labile behavior of complexes can be distinguished with the application of high (1000 nA) or low (100 to 20 nA) current. Using high current, no influence of added Cd2+ or Zn2+ ions on the reduction of Cd(II) or Zn(II) complexed within MT molecule was observed, except of additions of Cd2+ to ZnMT, where bound Zn(II) was substituted by cadmium ions. With lowering of stripping current and increasing concentration of added Cd2+ or Zn2+ ions in solution progressive formation of reorganized complex with labile behavior is observed. Parallel measurement using DC voltammetry with different rates of polarization or differential pulse voltammetry were in agreement with AdSCP measurement. However, only chronopotentiometric method combines good sensitivity and signal separation at μM concentrations, inevitable in MT studies.  相似文献   

16.
An electrochemically treated graphite pencil electrode (PGPE) has been simply prepared for trace level determination of α‐naphthol. The pretreatment of GPE surfaces is conducted in 0.8 M NaOH by cycling the potential between +1.3 and +1.9 V for 50 CV segments at a scan rate of 100 mV s?1. The influence of the pretreatment is studied extensively, and optimum conditions are obtained. Linear sweep anodic stripping voltammetry (LSASV) is used for the determination of α‐naphthol. Based on the constructed calibration curve, a linear range of 0.01 μM to 2.0 μM with a detection limit of 1.5 nM (S/N=3) is obtained. The results reveal that the electrochemical treatment of the GPE surface improves its electrochemical catalytic activity with reference to surfaces of the non‐treated GPE. The present method is applied for the determination of trace α‐naphthol in real water samples.  相似文献   

17.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   

18.
The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb2+ and Cd2+ during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb2+ and Cd2+, with the calculated detection limits of 1.4 × 10−11 M and 9.2 × 10−11 M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb2+ (or Cd2+) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb2+ and Cd2+ in aqueous effluent.  相似文献   

19.
This paper describes the fabrication, characterisation and the application of a Nafion/2,2′-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn2+, Cd2+ and Pb2+). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2′-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at −1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2′-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm−3) for Zn2+, 1.1 nM (0.12 μg dm−3) for Cd2+ and 0.37 nM (0.077 μg dm−3) for Pb2+. For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique.  相似文献   

20.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号