首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

2.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ).  相似文献   

3.
A simple, highly sensitive and label‐free electrochemical impedance spectroscopy (EIS) immunosensor was developed using Nafion and gold nanoparticles (nano‐Au/Nafion) composites for the determination of 1‐pyrenebutyric acid (PBA). Under the optimal conditions, the amount of immobilized antibody was significantly improved on the nano‐Au/Nafion electrode due to the synergistic effect and biocompatibility of Nafion film and gold nanoparticles composites. The results showed that the sensitivity and stability of nano‐Au/Nafion composite electrode for PBA detection were much better than those of nano‐Au modified glassy carbon electrode (nano‐Au/GCE). The plot of increased electron transfer resistances (Rets) against the logarithm of PBA concentration is linear over the range from 0.1 to 150 ng·mL?1 with the detection limit of 0.03 ng·mL?1. The selectivity and accuracy of the proposed EIS immunosensor were evaluated with satisfactory results.  相似文献   

4.
In this paper a room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was used as binder for the construction of carbon ionic liquid electrode (CILE) and a new electrochemical biosensor was developed for determination of H2O2 by immobilization of hemoglobin (Hb) in the composite film of Nafion/nano‐CaCO3 on the surface of CILE. The Hb modified electrode showed a pair of well‐defined, quasi‐reversible redox peaks with Epa and Epc as ?0.265 V and ?0.470 V (vs. SCE). The formal potential (E°′) was got by the midpoint of Epa and Epc as ?0.368 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The peak to peak separation was 205 mV in pH 7.0 Britton–Robinson (B–R) buffer solution at the scan rate of 100 mV/s. The direct electrochemistry of Hb in the film was carefully investigated and the electrochemical parameters of Hb on the modified electrode were calculated as α=0.487 and ks=0.128 s?1. The Nafion/nano‐CaCO3/Hb film electrode showed good electrocatalysis to the reduction of H2O2 in the linear range from 8.0 to 240.0 μmol/L and the detection limit as 5.0 μmol/L (3σ). The apparent Michaelis–Menten constant (KMapp) was estimated to be 65.7 μmol/L. UV‐vis absorption spectroscopy and FT‐IR spectroscopy showed that Hb in the Nafion/nano‐CaCO3 composite film could retain its native structure.  相似文献   

5.
A simple and efficient electrochemical method is utilized to functionalize aligned carbon nanotubes (ACNTs) by the electrochemical reduction of 4‐carboxyphenyl diazonium salt. Thus hemoglobin (Hb) molecules were covalently immobilized on the diazonium‐ACNTs surface via carbodiimide chemistry. Direct electrochemistry and bioelectrocatalytic activity of the immobilized Hb were then investigated by cyclic voltammetry (CV) and amperometry techniques. It is showed that the Hb film on the diazonium‐ACNTs electrode had well‐defined redox peaks with a formal potential (E°) at ?312 mV (vs. Ag/AgCl), and the Hb‐ACNTs electrode displayed good electrocatalytic activity to H2O2 reduction. Owing to the high Hb covering on the ACNTs surface (Γ*=2.7×10?9 mol cm?2), the catalytic current were significantly improved when compared to the current measured at an Hb‐tangled carbon nanotubes electrode. The Hb‐ACNTs electrode exhibited high sensitivity, long‐term stability and wide concentration range from 40 μM to 3 mM for the amperometric detection of H2O2. The heterogeneous reaction rate constant (ks) was 0.95±0.05 s?1 and the apparent Michaelis–Menten constant (K was 0.15 mM.  相似文献   

6.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

7.
In this paper NiMoO4 nanorods were synthesized and used to accelerate the direct electron transfer of hemoglobin (Hb). By using an ionic liquid (IL) 1‐butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE) as the basic electrode, NiMoO4 nanorods and Hb composite biomaterial was further cast on the surface of CILE and fixed by chitosan (CTS) to establish a modified electrode denoted as CTS/NiMoO4‐Hb/CILE. UV‐vis and FT‐IR spectroscopic results showed that Hb in the film retained its native structures without any conformational changes. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with a pair of well‐defined and quasi‐reversible redox voltammetric peaks appearing in phosphate buffer solution (PBS, pH 3.0), which was attributed to the direct electrochemistry of the electroactive center of Hb heme Fe(III)/Fe(II). The results were ascribed to the specific characteristic of NiMoO4 nanorods, which accelerated the direct electron transfer rate of Hb with the underlying CILE. The electrochemical parameters of Hb in the composite film were further carefully calculated with the results of the electron transfer number (n) as 1.08, the charge transfer coefficient (α) as 0.39 and the electron‐transfer rate constant (ks) as 0.82 s?1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid (TCA) in the concentration range from 0.2 to 26.0 mmol/L with a detection limit of 0.072 mmol/L (3σ), and H2O2 in the concentration range from 0.1 to 426.0 µmol/L with a detection limit of 3.16×10?8 mol/L (3σ).  相似文献   

8.
A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s−1. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L−1 with a detection limit of 0.0153 mmol L−1 (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L−1 with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L−1 with a detection limit of 0.282 μmol L−1 (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator.  相似文献   

9.
A simple and effective glucose biosensor based on immobilization of glucose oxidase (GOD) in graphene (GR)/Nafion film was constructed. The results indicated that the immobilized GOD can maintain its native structure and bioactivity, and the GR/Nafion film provides a favorable microenvironment for GOD immobilization and promotes the direct electron transfer between the electrode substrate and the redox center of GOD. The electrode reaction of the immobilized GOD shows a reversible and surface‐controlled process with the large electron transfer rate constant (ks) of 3.42±0.08 s?1. Based on the oxygen consumption during the oxidation process of glucose catalyzed by the immobilized GOD, the as‐prepared GOD/GR/Nafion/GCE electrode exhibits a linear range from 0.5 to 14 mmol·L?1 with a detection limit of 0.03 mmol·L?1. Moreover, it displays a good reproducibility and long‐term stability.  相似文献   

10.
A polymer film based on polymeric ionic liquid, which was poly(1‐vinyl‐3‐butylimidazolium chloride) (poly(ViBuIm+Cl?)for short), was firstly used as matrix to immobilize hemoglobin (Hb). FTIR and UV‐vis spectra demonstrated that the native structure of Hb was well preserved after entrapped into the polymer film. The Hb immobilized in the poly(ViBuIm+Cl?) film showed a fast direct electron transfer for the Hb‐FeIII/FeII redox couple. Based on the direct electron transfer of the immobilized Hb, polyvinyl alcohol (PVA)/Hb/poly(ViBuIm+Cl?)/GC electrode displayed good sensitivity and wide linear range for the detection of H2O2. The linear range of the PVA/Hb/poly(ViBuIm+Cl?)/GC electrode to H2O2 is from 3.5 to 224 μM with a limit of detection of 1.17 μM. Such an avenue, which integrated polymeric ionic liquid and redox protein via a simple method, may provide a novel and efficient platform for the fabrication of biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

11.
Hemoglobin (Hb) was directly immobilized on a multiwalled carbon nanotubes ionic liquid electrode by immersing this electrode in a solution consisting of Hb and 1‐octyl‐pyridinium chloride as an ionic liquid. The immobilized Hb displayed a pair of well‐defined cyclic voltammetric peaks with a formal potential of ?0.187 V in acetate buffer solution, pH 5.0. This modified electrode exhibits fast response, a long linearity range, a low detection limit, high stability and excellent sensitivity through hydrogen peroxide detection with a detection limit (3σ) of 3.18 µM. The electrode was also used for electrocatalysis and voltammetric determination of oxygen and trichloroacetic acid.  相似文献   

12.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

13.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

14.
A hemoglobin‐titanate composite based biosensor was chosen for determination of H2O2 in an acidic medium. CV results of the Hb‐titanate modified pyrolytic graphite electrode showed a pair of well‐defined, quasi‐reversible redox peaks centered at ?246 mV (vs. Ag/AgCl) in a pH 5.0 HAc‐NaAc buffer solution. The modified electrode exhibited good electrocatalytic response for monitoring H2O2 and had a large linear detection range from 20 μM to 3.2 mM with a detection limit of 8 μM (S/N=3) and a sensitivity of 29.7 mA M?1 cm?2 in the pH 5.0 solution. The biosensor also possessed good long term storage stability.  相似文献   

15.
Mesoporous silica thin films encapsulating a molecular iron‐triazole complex, Fe(Htrz)3 (Htrz=1,2,4,‐1H‐triazole), have been generated by electrochemically assisted self‐assembly (EASA) on indium‐tin oxide (ITO) electrode. The obtained modified electrodes are characterized by well‐defined voltammetric signals corresponding to the FeII/III centers of the Fe(Htrz)3 species immobilized into the films, indicating fast electron transfer processes and stable operational stability. This is due to the presence of a high density of redox probes in the material (1.6×10?4 mol g?1 Fe(Htrz)3 in the mesoporous silica film) enabling efficient charge transport by electron hopping. The mesoporous films are uniformly deposited over the whole electrode surface and they are characterized by a thickness of 110 nm and a wormlike mesostructure directed by the template role played by Fe(Htrz)3 species in the EASA process. These species are durably immobilized in the material (they are not removed by solvent extraction). The composite mesoporous material (denoted Fe(Htrz)3@SiO2) is then used for the electrocatalytic detection of hydrogen peroxide, which can be performed by amperometry at an applied potential of ?0.4 V versus Ag/AgCl and by flow injection analysis. The organic‐inorganic hybrid film electrode displays good sensitivity for H2O2 sensing over a dynamic range from 5 to 300 μM, with a detection limit estimated at 2 μM.  相似文献   

16.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

17.
Direct electron transfer of immobilized copper, zinc‐superoxide dismutase (SOD) onto electrodeposited nickel‐oxide (NiOx) nanoparticle modified glassy carbon (GC) electrode displays a well defined redox process with formal potential of ?0.03 V in pH 7.4. Cyclic voltammetry was used for deposition of (NiOx) nanoparticles and immobilization of SOD onto GC electrode. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized SOD are 1.75×10?11 mol cm?2 and 7.5±0.5 s?1, respectively. The biosensor shows a fast amperometric response (3 s) toward superoxide at a wide concentration range from 10 µM to 0.25 mM with sensitivity of 13.40 nA µM?1 cm?2 and 12.40 nA µM?1 cm?2, detection limit of 2.66 and 3.1 µM based on anodically and cathodically detection. This biosensor exhibits excellent stability, reproducibility and long life time.  相似文献   

18.
A graphite nanosheet (GNS)‐Nafion modified glassy carbon (GC) electrode was prepared and used for highly sensitive and selective determination of dopamine (DA). The GNS‐Nafion/GC electrode displayed excellent electrocatalytic activities towards DA and ascorbic acid (AA). The selective determination of DA was carried out successfully in the presence of AA by differential pulse voltammetry. High sensitivity (3.695 μA μM?1) and low detection limit (0.02 μM, S/N=3) for the DA detection were obtained. These good properties can be attributed to a large amount of edge plane defects presented on GNSs and the charge‐exclusion and concentration features of Nafion.  相似文献   

19.
A glassy carbon electrode was modified with β-manganese dioxide (β-MnO2), and glucose oxidase (GOx) was immobilized on its surface. The β-MnO2 nanowires were prepared by a hydrothermal method and characterized by scanning electron microscopy and powder X-ray diffraction. They were then dispersed in Nafion solution and cast on the glassy carbon electrode (GCE) to form an electrode modified with β-MnO2 nanowires that exhibits improved sensitivity toward hydrogen peroxide. If GOx is immobilized in the surface, the β-MnO2 acts as a mediator, and Nafion as a polymer backbone. The fabrication process was characterized by electrochemical impedance spectroscopy, and the sensor and its materials were characterized by cyclic voltammetry and amperometry. The biosensor enables amperometric detection of glucose with a sensitivity of 38.2 μA?·?mM?1?·?cm?2, and a response time of?<?5 s. This study also demonstrates the feasibility of realizing inexpensive, reliable, and high-performance biosensors using MnO2 nanowires.
Figure
The sensitive determination of glucose was realized at a β-MnO2 NWs modified glassy carbon electrode by amperometry. The relatively fast, reproducible and low-cost manufacturing procedure suggests that it can offer an excellent platform for glucose oxidase-biosensing applications.  相似文献   

20.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号