首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructures of polypyrrole (PPy) were synthesized in the presence of different dopants including hydrochloric acid (HCl), ferric chloride (FeCl3), p‐toluene sulfonic acid (p‐TSA), camphor sulfonic acid (CSA), and polystyrene sulfonic acid (PSSA), using a simple interfacial oxidative polymerization method. The method is a reliable non‐template approach with relatively simple instrumentation, ease of synthesis, and economic viability for synthesizing PPy nanostructures. Morphology of synthesized PPy structures was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicate the formation of one‐dimensional (1D) nanofibers with average diameter of 75–180 nm. Energy dispersive spectrum (EDS) of the PPy nanofibers indicates the attachment of the dopants to the PPy backbone; the fact is further confirmed by the Fourier transform infrared (FTIR) spectra of PPy nanostructures. Thermal stabilities of the nanostructures explored using thermal gravimetric analysis (TGA) follow the order PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA. It is noticed that the electrical conductivity (EC) of PPy nanostructures depends upon the nature of dopant (PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA), PPy‐p‐TSA nanofibers showing the highest EC of 6 × 10?2 Scm?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

3.
Nanofibers of poly (indene‐co‐pyrrole) (CInPy) have been synthesized, using a facile chemical oxidative polymerization reaction. The effect of copolymerization was examined in view of the individually synthesized homopolymer nanostructures of polyindene (PIn) and polypyrrole (PPy). Morphological details of CInPy, studied using scanning electron microscopy (SEM) and transmission electron microscopy, (TEM) reveal the appearance of dense cottony mess, comprising of fine fibers with an average diameter of 5–10 nm. Chemical structural analysis of CInPy, conducted using ultraviolet‐visible (UV‐Vis), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopic techniques, reveals that both PIn and PPy are involved in the formation of copolymer organization. Fluorescence properties of nanosized copolymer are observed in the blue region, with emission λmax placed at 395 nm. Conductivity of copolymer nanofibers (2.4 × 10?3 S/cm) is consistent with the morphology and thermal stability properties of integral homo‐polymers. Improved thermal stability and processability along with the enhanced optical and electrical properties of copolymer nanostructures outfit it as a better promising material in optoelectronic and light emitting nanodevices, with reference to nanosized PIn and PPy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, in situ AFM measurements with simultaneously electrochemical characterization were developed to study the mechanisms of both polypyrrole (PPy) and PPy/Au composite deposition. The nanoscale information derived from the in situ AFM images associated with theoretical simulation from the measured current–time transient (i–t) reveals that Au nanoparticles with negatively charged carboxylic groups can be the nuclei by both adsorption on the electrode surface and doping on PPy for the polymerization, and thus has faster nucleation and growth rate than Py alone at the early polymerization stage. The PPy/Au deposition shows parallel nucleation processes of Au nanoparticle and Py, and an instantaneous 3D nucleation mode. The work not only provides fundamental insights for PPy/Au nanocomposite deposition process, but also optimization approaches to fabricate a superior PPy/Au film with favorable features for greater potential applications.  相似文献   

5.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

6.
In this article, we reported a facile method to in‐situ synthesize Au@PNIPAM‐b‐PPy nanocomposites with thermosensitive and photothermal effects using amphiphilic poly(N‐isopropylacrylamide)‐block‐poly(pyrrolylmethylstyrene) (PNIPAM‐b‐PPMS) diblock copolymers as ligands. The hydrophobic PPMS block can in‐situ reduce to zero‐valent gold and simultaneously be oxidatively copolymerized with the free pyrrole monomers to form a crosslinked and conjugated polypyrrole (PPy) layer. The hydrophilic PNIPAM block as a stabilizer can produce highly thermosensitive effect. Moreover, the resultant Au@PNIPAM‐b‐PPy nanomaterials show a strong absorption in the near infrared (NIR) region, which endowed the system excellent photothermal effect. On the basis of the PPy photothermal and PNIPAM thermosensitive effects, the above Au@PNIPAM‐b‐PPy nanomaterials show a reversible, soluble‐precipitate transition upon the NIR irradiation off‐on. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3079–3085  相似文献   

7.
Chlorosomes are one of the most unique natural light‐harvesting antennas and their supramolecular nanostructures are still under debate. Chlorosomes contain bacteriochlorophyll (BChl)‐c, d and e molecules and these pigments self‐aggregate under a hydrophobic environment inside a chlorosome. The self‐aggregates are mainly constructed by the following three interactions: hydrogen bonding, coordination bonding and π–π stacking. Supramolecular nanostructures of self‐aggregated BChls have been widely investigated by spectroscopic and microscopic techniques. Model compounds of such chlorosomal BChl molecules have been synthesized and the effects of esterified long alkyl chains at the 17‐propionate residue for their self‐aggregation have been studied. Structurally simple zinc chlorophyll derivatives possessing an oligomethylene chain as the esterifying group at the 17‐propionate residue were prepared as chlorosomal BChl models. The synthetic zinc BChls self‐aggregated in nonpolar organic solvents to give precipitates. The resulting insoluble self‐aggregated solids were investigated on a variety of substrates, including hydrophobic, neutral and hydrophilic substrates, by visible absorption, circular dichroism and polarized light absorption spectroscopies, as well as atomic force, transmission electron and scanning electron microscopies. The self‐aggregates of synthetic Zn‐BChls formed rods with an approximately 5 nm diameter and wires with further elongated growth of the rods (aspect ratio >200). The diameter size was consistent with that estimated for natural chlorosomal rods in a filamentous anoxygenic phototroph, Chloroflexus aurantiacus. The supramolecular formation and stability of the rod on the examined substrates depended on the length of an oligomethylene chain at the 17‐propionate residue as well as on the surface properties. Especially, the number of the 5 nm rods on the substrates increased with an elongation of the chain.  相似文献   

8.
The self‐assembly and self‐organization behavior of chromophoric acetylenic scaffolds bearing 2,6‐bis(acetylamino)pyridine ( 1 , 2 ) or uracyl‐type ( 3 – 9 ) terminal groups has been investigated by photophysical and microscopic methods. Systematic absorption and luminescence studies show that 1 and 2 , thanks to a combination of solvophilic/solvophobic forces and π–π stacking interactions, undergo self‐organization in apolar solvents (i.e., cyclohexane) and form spherical nanoparticles, as evidenced by wide‐field optical microscopy, TEM, and AFM analysis. For the longer molecular module, 2 , a more uniform size distribution is found (80–200 nm) compared to 1 (20–1000 nm). Temperature scans in the range 283–353 K show that the self‐organized nanoparticles are reversibly formed and destroyed, being stable at lower temperatures. Molecular modules 1 and 2 were then thoroughly mixed with the complementary triply hydrogen‐bonding units 3 – 9 . Depending on the specific geometrical structure of 3 – 9 , different nanostructures are evidenced by microscopic investigations. Combination of modules 1 or 2 with 3 , which bears only one terminal uracyl unit, leads to the formation of vesicular structures; instead, when 1 is combined with bis‐uracyl derivative 4 or 5 , a structural evolution from nanoparticles to nanowires is observed. The length of the wires obtained by mixing 1 and 4 or 1 and 5 can be controlled by addition of 3 , which prompts transformation of the wires into shorter rods. The replacement of linear system 5 with the related angular modules 6 and 7 enables formation of helical nanostructures, unambiguously evidenced by AFM. Finally, thermally induced self‐assembly was studied in parallel with modules 8 and 9 , in which the uracyl recognition sites are protected with tert‐butyloxycarbonyl (BOC) groups. This strategy allows further control of the self‐assembly/self‐organization process by temperature, since the BOC group is completely removed on heating. Microscopy studies show that the BOC‐protected ditopic modules 8 self‐assemble and self‐organize with 1 into ordered linear nanostructures, whereas BOC‐protected tritopic system 9 gives rise to extended domains of circular nano‐objects in combination with 1 .  相似文献   

9.
Heparin‐doped polypyrrole (PPy‐Hep) and ‐doped polypyrrole (PPy‐ClO4) films are synthesized onto FTO‐coated glass electrode in a potentiostatic electrochemical process with the aim of producing uniform, transparent, and adherent coating. The resultant polymers are characterized via cyclic voltammetry, scanning electron microscopy (SEM), and UV–vis absorption spectroscopy. SEM study indicates that the PPy‐Hep film to be composed of a continuous interlinked network of quasi spherical grains (50–80 nm in dimensions). The electrochromic properties of PPy‐Hep and PPy‐ClO4 polymer films are compared to spectroelectrochemistry and switching studies. The effect of different solvents (water, propylene carbonate, and acetonitrile) on the electrochromic features of electropolymerized polymers has been investigated, and we find a very significant solvent effect. PPy‐Hep film exhibits switching time of 1 s and the maximum transmittance contrast (ΔT%) is 48% at 800 nm in water. In addition, presence of Hep causes drastic enhancement of electro‐optical stability of PPy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3365–3371  相似文献   

10.
Electroactive polypyrrole (PPy) are highly attractive for a number of biomedical applications such as tissue engineering. To improve interfacial compatibility of PPy with biopolyesters, poly (?‐caprolactone) grafted PPy (PPy‐g‐PCL) are synthesized in this work and characterized with Fourier transform infrared and nuclear magnetic resonance. PPy‐g‐PCL exhibits good conductivity and electrochemical activity. It is also blended with poly (glycolide‐lactide) to make aligned fiber membranes via drum at the speed of 1500 r/min. The relationships of blending ratio with the fibrous structure, thermal stability, wettability, and mechanical properties are clarified. The results show that blending PPy‐g‐PCL has no significant effect on the fibrous morphology, but fibers trends aligned architecture as the blend ratio of poly (glycolide‐lactide)/PPy‐g‐PCL exceeds 70/30. The membranous thermal and mechanical stability are modified. The membranous hydrophilicity significantly enhances with PPy‐g‐PCL amount increasing. Then the fiber membrane with topographical and electrical cues is qualified as the application of tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This work demonstrates a feasible route to synthesize the layered polypyrrole/graphite oxide (PPy/GO) composite by in situ emulsion polymerization in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) as emulsifier. AFM and XRD results reveal that the GO can be delaminated into nanosheets and well dispersed in aqueous solution in the presence of CTAB. The PPy nanowires are formed due to the presence of the lamellar mesostructured (CTA)2S2O8 as a template. The results of the PPy/GO composite indicate the PPy insert successfully into GO interlayers, and the nanofiber‐like PPy are deposited onto the GO surface. Owing to π–π electron stacking effect between the pyrrole ring of PPy and the unoxided domain of GO sheets, the electrical conductivity of PPy/GO composite (5 S/cm) significantly improves in comparison with pure PPy nanowires (0.94 S/cm) and pristine GO (1 × 10?6 S/cm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1329–1335, 2010  相似文献   

12.
TiO2/polypyrrole (PPy) nanocomposite ultrathin films for NH3 gas detection were fabricated by the in situ self-assembly technique. The films were characterized by UV–Vis absorption, FT–IR spectroscopy, and atomic force microscopy (AFM). The electrical properties of TiO2/PPy ultrathin film NH3 gas sensors, such as sensitivity, selectivity, reproducibility, and stability were investigated at room temperature in air as well as in N2. The results showed that the optimum gas-sensing characteristics of TiO2/PPy ultrathin film were obtained in the presence of 0.1?wt% colloidal TiO2 for 20-min deposition. Compared with pure PPy thin-film sensors, the TiO2/PPy film gas sensor has a shorter response/recovery time. It was also found that both humidity and temperature had an effect on the operation of the TiO2/PPy film gas sensor at low NH3 concentrations.  相似文献   

13.
《Electroanalysis》2006,18(11):1047-1054
We report the electropolymerization and characterization of polypyrrole films doped with poly(m‐aminobenzene sulfonic acid (PABS) functionalized single‐walled nanotubes (SWNT) (PPy/SWNT‐PABS). The negatively charged water‐soluble SWNT‐PABS served as anionic dopant during the electropolymerization to synthesize PPy/SWNT‐PABS composite films. The synthetic, morphological and electrical properties of PPy/SWNT‐PABS films and chloride doped polypyrrole (PPy/Cl) films were compared. Characterization was performed by cyclic voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy. SEM and AFM images revealed that the incorporation of SWNT‐PABS significantly altered the morphology of the PPy. Cyclic voltammetry showed improved electrochemical properties of PPy/SWNT‐PABS films as compared to PPy/Cl films. Raman Spectroscopy confirmed the presence of SWNT‐PABS within composite films. Field effect transistor (FET) and electrical characterization studies show that the incorporation of the SWNT‐PABS increased the electronic performance of PPy/SWNT‐PABS films when compared to PPy/Cl films. Finally, we fabricated PPy/SWNT‐PABS nanotubes which may lead to potential applications to sensors and other electronic devices.  相似文献   

14.
High‐quality atomically flat substrates are critical for the analysis and imaging of surface‐mounted ultrathin films and nanostructures. Here we report significant improvement in the preparation of large areas of atomically smooth Au(111) substrates. A thin layer of gold on silicon is flame‐annealed in air and then stripped from the template. The substrates were analyzed with X‐ray diffraction and high‐resolution atomic force microscopy (AFM). In contrast to the previously reported template stripped gold (TSG) substrates, flame‐annealed template stripped substrates reveal no detectable pinholes. The substrate surface is atomically smooth with most grains being larger than 1 µm2. The entire procedure requires less than 2 h and uses readily available materials and common laboratory equipment. The resulting substrates can be stored for longer periods of time and then used immediately without need for common cleaning procedures. Evidence is provided that self‐assembled monolayers on these substrates are higher quality than those prepared with previously reported gold substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Summary: We demonstrate a novel approach for constructing photoactive multilayer films in which the aggregation of fluorescing molecules is effectively eliminated. In the films formed via a layer‐by‐layer electrostatic self‐assembly technique, the core‐shell amphiphilic copolymer, poly[(sodium 4‐styrenesulfonate)‐block‐vinylnaphthalene], was deposited. The isolated cores served as nanosized host sites for photoactive guest molecules (pyrene, perylene). The efficient energy transfer between polymeric chromophores and perylene molecules was observed.

AFM image of a nanostructured polymeric film prepared via a layer‐by‐layer technique and containing photoactive block copolymer poly[(sodium 4‐styrenesulfonate)‐block‐vinylnaphthalene]. Below is the representative height profile taken along the drawn line.  相似文献   


16.
A facile and versatile solution‐based approach was developed to prepare semiconductor metal oxide nanobelt‐conducting organic polymer core‐shell nanocomposites. Well‐defined nanobelts of several types of oxide nanobelts were combined with conducting polymer [polypyrrole (PPy) and polyaniline (PANi)] via in situ polymerization in aqueous solution to obtain a new type of inorganic–organic composite nanostructure. Samples were characterized by using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, electron energy loss spectra, high‐resolution transmission electron microscopy, and ultraviolet–visible techniques. Electron energy loss spectra revealed the existence of C?C and C? N bonds in coating layers to prove the encapsulation of PPy or PANi. The red‐shift of absorption band at high‐energy was observed for PPy‐encapsulated composites via ultraviolet–visible spectroscopy, and significant absorption band shifts were also encountered to PANi‐encapsulated composites, which suggest possibilities of band‐gap tuning of such metal oxide‐conducting polymer composites to be applied especially in solar cell devices. However, the sacrifice of nanobelts‐core led to hollow structures of PPy and PANi, which expands the synthetic strategies to prepare conducting polymer nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2892–2900, 2005  相似文献   

17.
Gold‐directed polypyrrole (PPy) nanoarrays are fabricated by hydrogel‐assisted nanotransfer edge printing (HnTEP) and electrochemical polymerization. Gold nanoarrays are fabricated through the HnTEP method, which involves metal deposition, hydrogel etching, and nanotransfer edge printing. By utilizing the well‐positioned gold nanostructures, PPy nanoarrays with smooth morphology and controllable dimensions are fabricated through in situ electrochemical polymerization, the results of which are characterized by scanning electron microscopy and atomic force microscopy. A gas sensor based on PPy nanoarrays results in excellent sensing capabilities towards NH3 detection, especially the sensitivity and fast response. This method appears to be general and may aid in the future design and implementation of other active materials which can also be manipulated by the same procedure and serve as functional components for chemical sensing, optoelectronics, biodetection, and other applications.  相似文献   

18.
We reported the functionalization of multiwalled carbon nanotube (MWCNT) with 4‐aminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resulting 4‐aminobenzoyl‐functionalized MWCNT (AF‐MWCNT) was used as a platform for the grafting of polypyrrole (PPy) in ammonium persulfate (APS)/aqueous hydrochloric acid solution to produce PPy‐grafted MWCNT (PPy‐g‐MWCNT) composite. After dedoping with alkaline treatment, PPy‐g‐MWCNT displayed 20 times higher electrical conductivity than that of PPy. The current density and cycle stability of PPy‐g‐MWCNT composite were also remarkably improved compared with those of PPy homopolymer, suggesting that an efficient electron transfer between PPy and MWCNT was possible through covalent links. In addition, PPy‐g‐MWCNT displayed high electrocatalytic activity for oxygen reduction reaction (ORR). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
This work describes the preparation and characterization of polypyrrole (PPy)/iron oxide nanocomposites fabricated from monodispersed iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and PPy by in situ chemical oxidative polymerization. Two spherical nanoparticles of magnetite, such as 4 and 8 nm, served as cores were first dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/magnetite spherical templates that avoid the aggregation of magnetite nanoparticles during the further preparation of nanocomposites. The PPy/magnetite nanocomposites were then synthesized on the surface of the spherical templates. Structural and morphological analysis showed that the fabricated PPy/magnetite nanocomposites are core (magnetite)‐shell (PPy) structures. Morphology of the PPy/magnetite nanocomposites containing monodispersed 4‐nm magnetite nanoparticles shows a remarkable change from spherical to tube‐like structures as the content of nanoparticles increases from 12 to 24 wt %. Conductivities of these PPy/magnetite nanocomposites show significant enhancements when compared with those of PPy without magnetite nanoparticles, in particular the conductivities of 36 wt % PPy/magnetite nanocomposites with 4‐nm magnetite nanoparticles are about six times in magnitude higher than those of PPy without magnetite nanocomposites. These results suggest that the tube‐like structures of 36 wt % PPy/magnetite nanocomposites may be served as conducting network to enhance the conductivity of nanocomposites. The magnetic properties of 24 and 36 wt % PPy/magnetitenanocomposites show ferromagnetic behavior and supermagnetism, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1291–1300, 2008  相似文献   

20.
The dielectric properties of poly(styrene) nanoparticles decorated at their surfaces with poly(styrene sulfonate) [PSS] brushes and subsequently loaded with polypyrrole (PPy) were studied. These film‐forming materials which may serve as hole‐injection layers in organic light‐emitting diodes, exhibit a core–shell‐type morphology with a core of electrically insulating poly(styrene) and a shell consisting of a corona of PSS chains which form the matrix in which the electrically conducting complex of PPy and PSS is embedded. This conducting complex exists in form of domains of nanoscale dimensions. Thin compressed pellets of these nanoparticles were studied using mainly impedance spectroscopy. Measurements were carried out in the temperature range between 123 and 453 K and frequency range from 10?1 to 106 Hz. While earlier studies were centered around the effect of polypyrrole volume fraction on the conductivity films and pellets composed of these nanoparticles, the present study reveals in which way the conductivity can be modified by exchange of the mobile inorganic counter ions of PSS. Besides the free‐acid form (H+), the Li+‐, Na+‐ and Cs+‐salts of PSS were investigated. The PPy volume fraction was the same for all PPy/PSS core–shell nanoparticles. The distance for phonon‐assisted hopping between next‐neighbor polypyrrolium chains is influenced by the presence of these inorganic cations. For all samples containing PPy, a transition from insulating to conducting behavior in the range of 300‐350 K was found. Using the fluctuation‐induced tunneling model, the average tunneling distance, as well as the potential energy barrier separating neighboring conducting grains was estimated. Finally, a detailed analysis of the dielectric spectra suggests the localization length of the charge carriers to be about 0.33 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号