首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We report the synthesis and biochemical evaluation of selective inhibitors of class II (zinc-dependent) fructose bisphosphate aldolases. The most active compound is a simplified analogue of fructose bisphosphate, bearing a well-positioned metal chelating group. It is a powerful and highly selective competitive inhibitor of isolated class II aldolases. We report crystallographic studies of this inhibitor bound in the active site of the Helicobacter pylori enzyme. The compound also shows activity against Mycobacterium tuberculosis isolates.  相似文献   

4.
5.
6.
7.
Activity of acid sphingomyelinase has been implicated in a number of diseases like acute lung injury, sepsis or metastasis of melanoma cells. Here, we present a sphingomyelinase FRET probe based on FAM/BODIPY dyes for real-time monitoring of acid sphingomyelinase. The probe gives rise to a tremendous increase in fluorescence of the fluorescein FRET donor upon cleavage and we show that this is, to a significant part, due to cleavage-associated phase transition, suggesting a more systematic consideration of such effects for future probe development. The probe allows for the first time to monitor relative sphingomyelinase activities of intact living cells by flow cytometry.  相似文献   

8.
This paper presents an enzyme building block for the assembly of megamolecules. The system is based on the inhibition of the human-derived cellular retinoic acid binding protein II (CRABP2) domain. We synthesized a synthetic retinoid bearing an arylfluorosulfate group, which uses sulfur fluoride exchange click chemistry to covalently inhibit CRABP2. We conjugated both the inhibitor and a fluorescein tag to an oligo(ethylene glycol) backbone and measured a second-order rate constant for the protein inhibition reaction of approximately 3,600 M−1s−1. We used this new enzyme-inhibitor pair to assemble multi-protein structures in one-pot reactions using three orthogonal assembly chemistries to demonstrate exact control over the placement of protein domains within a single, homogeneous molecule. This work enables a new dimension of control over specificity, orientation, and stoichiometry of protein domains within atomically precise nanostructures.  相似文献   

9.
10.
Real‐time monitoring of acid sphingomyelinase (ASM) activity is crucial for investigating its role in lipid‐mediated signaling processes. In this study, we synthesized fluorescent phosphosphingolipids capable of FRET by phosphorodichloridate chemistry. These sphingomyelin analogues are substrates for recombinant human ASM and can be used to monitor ASM activity by fluorescence spectroscopy. Incubation with cell lysates from wild‐type and knock‐out mice further confirmed probe cleavage to be exclusive to ASM. We also systematically exploited the environmental sensitivity of the fluorophores to achieve significant increases in responsiveness. This concept may be transferred to other lipid probes in the future. The ASM activity in live cells was imaged by two‐photon‐excitation microscopy.  相似文献   

11.
12.
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self‐assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic “thermal tag” with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily‐selective probes against two clinically important epigenetic enzymes: FTO ( 7 ; IC50=2.6 μm ) and ALKBH3 ( 8 ; IC50=3.7 μm ). To date, this is the first report of a subfamily‐selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.  相似文献   

13.
Selective inhibition of the transporter protein sodium‐glucose cotransporter 2 (SGLT2) has emerged as a promising way to control blood glucose level in diabetes patients. Reported herein is a short and convergent synthetic route towards some small‐molecule SGLT2 inhibitors by a chemo‐ and diastereospecific palladium‐catalyzed arylation reaction. This synthetic strategy enabled the discovery of two highly selective and potent SGLT2 inhibitors, thereby paving the way towards the development of carbasugar SGLT2 inhibitors as potential antidiabetic/antitumor agents.  相似文献   

14.
The concept of proteasome inhibition ranks among the latest achievements in the treatment of blood cancer and represents a promising strategy for modulating autoimmune diseases. In this study, we describe peptidic sulfonyl fluoride inhibitors that selectively block the catalytic β5 subunit of the immunoproteasome by inducing only marginal cytotoxic effects. Structural and mass spectrometric analyses revealed a novel reaction mechanism involving polarity inversion and irreversible crosslinking of the proteasomal active site. We thus identified the sulfonyl fluoride headgroup for the development and optimization of immunoproteasome selective compounds and their possible application in autoimmune disorders.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号