首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To analyze the specific roles of anthraquinone‐2‐sulfonate (AQS) and polypyrrole (PPy) layer on oxygen reduction reaction (ORR), the electrocatalytic reduction of oxygen was investigated on the AQS/PPy composite modified graphite electrode. Results show that the enhanced electrocatalytic performance is attributed to the excellent electrocatalytic activity of the immobilized AQS functional groups to mediate two‐electron reduction of O2 to H2O2. The PPy layer may not participate in ORR, but it can further catalyze the two‐electron reduction of H2O2 to produce H2O in the potential range more negative than that the two‐electron reduction of oxygen proceeds efficiently on the AQS sites.  相似文献   

2.
We reported the functionalization of multiwalled carbon nanotube (MWCNT) with 4‐aminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resulting 4‐aminobenzoyl‐functionalized MWCNT (AF‐MWCNT) was used as a platform for the grafting of polypyrrole (PPy) in ammonium persulfate (APS)/aqueous hydrochloric acid solution to produce PPy‐grafted MWCNT (PPy‐g‐MWCNT) composite. After dedoping with alkaline treatment, PPy‐g‐MWCNT displayed 20 times higher electrical conductivity than that of PPy. The current density and cycle stability of PPy‐g‐MWCNT composite were also remarkably improved compared with those of PPy homopolymer, suggesting that an efficient electron transfer between PPy and MWCNT was possible through covalent links. In addition, PPy‐g‐MWCNT displayed high electrocatalytic activity for oxygen reduction reaction (ORR). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A stable polyaniline (PANI) film doped with anthraquinonedisulfonate (AQDS) on glassy carbon (GC) electrode is obtained in acidic solution. The electrochemical behavior of PANI/AQDS film coincides with the donor–acceptor (DA) intramolecular interaction, while the doped AQDS behaves as a two‐electron two‐proton transfer process during redox reaction. This GC/PANI/AQDS electrode shows high electrocatalytic activity and irreversible electron‐transfer characteristic for O2 two‐electron reduction. Tafel behavior analysis suggests that the oxygen reduction kinetics are different at certain potential regions on this electrode. Possible mechanism of oxygen reduction on the GC/PANI/AQDS electrode points to a similar Schottky diode characteristic.  相似文献   

4.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

5.
《中国化学会会志》2018,65(6):687-695
In this work, the PPy/Fe3O4@TiO2 composite was synthesized and characterized by X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and magnetic measurements (using a vibrating sample magnetometer). The adsorption performance of PPy/Fe3O4@TiO2 composite for Cr(VI) ions was evaluated by UV irradiation. The effects of pH, adsorbent dose, contact time, and the initial concentration on the adsorption performance of Cr(VI) onto PPy/Fe3O4@TiO2 were investigated. The maximum adsorption capacity of Cr(VI) upon doped PPy/Fe3O4@TiO2 is 85.30 mg/g at room temperature. The total adsorption process likely follows the Langmuir model and pseudo‐second‐order kinetics. Our study suggests that the PPy/Fe3O4@TiO2 composite can be efficiently used for the adsorption of Cr(VI) ions.  相似文献   

6.
A novel core-shell sphere with controlled shell thickness was synthesized by in situ chemical oxidative polymerization of pyrrole on FTS (Fe2O3/TiO2/SiO2 composite) surface. The dual porosity of 2-3 nm and 40-50 nm in FTS core particle provides the hybrids with a high surface area to volume ratio, which enormously facilitates the molecule diffusion process. Furthermore, the porous FTS particle encapsulate Fe2O3 and TiO2 leading to its synergetic interaction with the PPy coating based on FTIR analysis. The unique structure and composition of the hybrid spheres result in new sensing property that is not available from their single counterparts. Cyclic voltammetry results demonstrate that the spheres with appropriate concentration of PPy exhibit enhanced electrocatalytic activity toward the reduction of H2O2 in 0.1 M phosphate buffer solution. The sensing performance tests show that the hybrids possess good linear response in wide H2O2 concentration range (10-4000 μM) and high sensitivity to H2O2 (0.653 A M−1 cm−2) at room temperature. The formation mechanism of the spheres was proposed based on the fact that the FTS core was coated firstly by a smooth PPy layer and then PPy nanoparticles. The work reported here provides an alternative concept for preparation of functional materials with new nanostructures and properties.  相似文献   

7.
《Electroanalysis》2005,17(22):2068-2073
A new cathodic scheme for hydrogen peroxide (H2O2) measurement by Fe3O4‐based chemical sensor was described. The unique characteristic of electrocatalytic property was firstly investigated by voltammetry. And then the amperometric response of H2O2 was measured at ?0.2 V (vs. Ag/AgCl) by Fe3O4 modified glassy carbon rotating disk electrode. The kinetic parameter was also calculated from Koutecky‐Levich plot, and the value was 6.4×10?4 cm s?1 in pH 3 citrate buffer. In order to benefit the possible biomedical applications, Fe3O4/chitosan modified electrode was also investigated in this experiment. There were several characteristic enhancements by the coated chitosan thin film for H2O2 sensor. The calibration curves were found to be linear up to 4.0 and 5.0 mM (r=0.999) in pH 3 and 7 with the detection limits of 7.6 and 7.4 μM L?1 (S/N=3). The stability was evaluated by the results of half‐life time (t50%) for 9 months at room temperature and 24 months at 4 °C.  相似文献   

8.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

9.
Local ion activity changes in close proximity to the surface of an oxygen depolarized cathode (ODC) were measured by scanning electrochemical microscopy (SECM). While the operating ODC produces OH? ions and consumes O2 and H2O through the electrocatalytic oxygen reduction reaction (ORR), local changes in the activity of OH? ions and H2O are detected by means of a positioned Pt microelectrode serving as an SECM tip. Sensing at the Pt tip is based on the pH‐dependent reduction of PtO and obviates the need for prior electrode modification steps. It can be used to evaluate the coordination numbers of OH? ions and H2O, and the method was exploited as a novel approach of catalyst activity assessment. We show that the electrochemical reaction on highly active catalysts can have a drastic influence on the reaction environment.  相似文献   

10.
This article reports a simple self‐assembly process for facile one‐step synthesis of novel electromagnetic functionalized polypyrrole (PPy)/Fe3O4 composite nanotubes using p‐toluenesulfonic acid (p‐TSA) as the dopant and FeCl3 as the oxidant. The key trick of the present method is to use FeCl3 as the oxidant for both PPy and Fe3O4 in the same time to synthesize PPy/Fe3O4 composite nanotubes in one‐step. This facile one‐step method is much simpler than the conventional approach using the Fe3O4 nanoparticles as the additives. Compared to the similar composites synthesized using the conventional method, the as‐prepared PPy‐p‐TSA/Fe3O4 composite nanotubes using the facile one‐step self‐assembly process show much higher room‐temperature conductivity. Moreover, the composite nanotubes display interesting ferromagnetic behavior. The electrical properties of the PPy‐p‐TSA/Fe3O4 composite nanotubes are dominated by the amount of FeCl3 while their magnetic properties are controlled by the amount of FeCl2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 320–326, 2010  相似文献   

11.
The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum‐like α‐Fe2O3/polypyrrole (PPy) nanoarrays (T‐Fe2O3/PPy NAs). The 3D, and interconnected T‐Fe2O3/PPy NAs are successfully grown on conductive carbon cloth through an easy self‐sacrificing template and in situ vapor‐phase polymerization route under mild conditions. The electrode made of the T‐Fe2O3/PPy NAs exhibits a high areal capacitance of 382.4 mF cm−2 at a current density of 0.5 mA cm−2 and excellent reversibility. The solid‐state asymmetric supercapacitor consisting of T‐Fe2O3/PPy NAs and MnO2 electrodes achieves a high energy density of 0.22 mWh cm−3 at a power density of 165.6 mW cm−3.  相似文献   

12.
13.
The electrocatalytic performance of a spinel for the oxygen reduction reaction (ORR) can be significantly promoted by reversing its crystalline structure from the normal to the inverse. As the spinel structure reversed, the activation and cleavage of O?O bonds are accelerated owing to a dissimilarity effect of the distinct metal atoms co‐occupying octahedral sites. The CoIIFeIIICoIIIO4 spinel with the Fe and Co co‐occupying inverse structure exhibits an excellent ORR activity, which even exceeds that of the state‐of‐the‐art commercial Pt/C by 42 mV in alkaline medium.  相似文献   

14.
In this study, the effect of photo-Fenton process on the treatment of petrochemical waste water treatment was investigated. The influence of process conditions were determined by factorial design. Optimization of the process conditions were performed by central composite design. Under, optimized conditions lab scale and solar assisted pilot scale of petrochemical waste water treatment was performed. Three factors namely initial pH, H2O2 concentration (mM) and Fe2+ concentration (mM) executed the essential role in petrochemical waste water treatment. Central composite design resulted in the prediction of optimized value as 6.5 initial pH, 15.65 mM of H2O2 concentration and 2.09 mM of Fe2+ concentration. Under these conditions, the reduction in chemical oxygen demand (COD) percentage reached about 68.67 ± 2.8% after 280 min in pilot scale of solar assisted photo Fenton process of petrochemical waste water treatment. Thus, experimental design combined with advanced Fenton process can become a feasible unconventional method for petrochemical waste water treatment.  相似文献   

15.
The present work describes the development of a selective, sensitive and stable sensing microsensor for scanning electrochemical microscopy (SECM) to measure H2O2 during electrochemical reduction of oxygen. The microsensor is based on graphene and Poly(3,4‐ethylenedioxythiophene) composite as support to iron (III) hexacyanoferrate (II) (PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor). The electrochemical properties of the PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor showed an excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction with a diminution of the overpotential of about 500 mV in comparison to the process at a bare gold microelectrode. The microsensor presented excellent performance for two dimensional mapping of H2O2 by SECM in 0.1 mol L?1 phosphate buffer solution (pH 7.0). Under optimized conditions, a linear response range from 1 up to 1000 µmol L?1 was obtained with a sensitivity of 0.08 nA L µmol?1 and limit of detection of 0.5 µmol L?1.  相似文献   

16.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   

17.
The large‐scale industrial production of acetic acid (HAc) from carbonylation of methanol has enabled intense research interest from direct hydrogenation of HAc to acetaldehyde (AA). Herein, a series of cerium‐iron oxide solid solution supported metallic cobalt catalysts were prepared by modified sol‐gel method and were applied in gas‐phase hydrogenation of HAc to AA. A synergistic effect between the hydrogenation metal cobalt and Ce‐Fe oxide solid solution is revealed. Specifically, oxygen vacancies provide the active sites for adsorption of HAc, while highly uniformly dispersed metallic Co adsorbs H2 and activates the reduction of HAc into AA. Moreover, the metallic Co can also assist the cyclical conversion between Fe3+/Fe2+ and Ce3+/Ce4+ on the surface of Ce1‐xFexO2‐δ supports. The unique effect substantially enhances the ability of the support material to rapidly capture oxygen atoms from HAc. It is found that the catalyst of 5% Co/Ce0.8Fe0.2O2‐δ with the highest concentration of oxygen vacancy presents the best catalytic performance (i.e. acetaldehyde yield reaches 49.9%) under the optimal reaction conditions (i.e. 623 K and H2 flow rate = 10 mL/min). This work indicates that the Co/Ce‐Fe oxide solid solution catalyst can be potentially used for the selective hydrogenation from HAc to AA. The synergy between the metallic Co and Ce1‐xFexO2‐δ revealed can be extended to the design of other composite catalysts.  相似文献   

18.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

19.
Hydroxylation of benzene by molecular oxygen (O2) occurs efficiently with 10‐methyl‐9,10‐dihydroacridine (AcrH2) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4)3 or Fe(ClO4)2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10‐methylacridinium ion and hydrogen peroxide (H2O2) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4)3 is started by the formation of H2O2 from AcrH2, O2, and H+. Hydroperoxyl radical (HO2.) is produced from H2O2 with the redox pair of Fe3+/Fe2+ by a Fenton type reaction. The rate‐determining step in the initiation is the proton‐coupled electron transfer from Fe2+ to H2O2 to produce HO. and H2O. HO. abstracts hydrogen rapidly from H2O2 to produce HO2. and H2O. The Fe3+ produced was reduced back to Fe2+ by H2O2. HO2. reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH.) to constitute the radical chain reaction. Hydroperoxyl radical (HO2.), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2O2.  相似文献   

20.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号