首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to conventional stepwise synthesis of molecular Borromean rings, a self‐assembly synthetic method which proceeds without the aid of a template has been developed. In the formation of molecular rectangles, by adjustment of the long‐arm length of the rectangles, a series of size‐dependent Borromean‐link frameworks were constructed. Both the shortest length of two arms and the relative proportion of the length of the long arm to that of the short arm play a key role in the formation of Borromean rings. DFT calculations were used to provide theoretical support for the formation of discrete interlocked frameworks.  相似文献   

2.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

3.
Conjugates of poly(ferrocenyldimethylsilane) (PFDMS) with Ac‐(GA)2‐OH, Ac‐A4‐OH, Ac‐G4‐OH and Ac‐V4‐OH have been prepared by reaction of the tetrapeptide units with the amino‐terminated metallopolymer. The number average degree of polymerisation (DPn) of the PFDMS was approximately 20 and comparable materials with shorter (DPn≈10) and/or amorphous chains have been prepared by the same procedure. Poly(ferrocenylethylmethylsilane) (PFEMS) was employed for the latter purpose. All conjugates were characterised by GPC, MALDI‐TOF MS, NMR and IR spectroscopy. With the exception of Ac‐V4‐PFDMS20, all materials exhibited some anti‐parallel β‐sheet structure in the solid state. The self‐assembly of the conjugates was studied in toluene by DLS. The vast majority of the materials, irrespective of peptide sequence or chain crystallinity, afforded fibres consisting of a peptidic core surrounded by a PFS corona. These fibres were found in the form of cross‐linked networks by TEM and AFM. The accessibility of the chemically reducing PFS corona has been demonstrated by the localised formation of silver nanoparticles on the surface of the fibres.  相似文献   

4.
Highly selective, narcissistic self‐sorting can be achieved in the formation of self‐assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high‐fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process.  相似文献   

5.
Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles generates new nanostructures, which have unforeseen collective, intrinsic physical properties. These properties can be exploited for multipurpose applications in nanoelectronics, spintronics, sensors, etc. This review surveys different techniques, currently employed and being developed, for assembling nanoparticles in to ordered nanostructures. In this endeavour, the principles and methods involved in the development of assemblies are discussed. Subsequently, different possibilities of nanoparticle‐based nanostructures, obtained in multi‐dimensions, are presented.  相似文献   

6.
The reversibility of boronic acid and diol interaction makes it an ideal candidate for the design of self‐assembled molecular structures. Reversibility is required to ensure that the thermodynamically most stable structure is formed. Reversibility also ensures that any errors produced during the assembly process are not permanent.  相似文献   

7.
Herein, the relationship between the supramolecularly self‐assembled nanostructures and the chemical structures of coil‐rod‐coil molecules is discussed. A series of nonamphiphilic coil‐rod‐coil molecules with different alkyl chains, central mesogenic groups, and chemical linkers were designed and synthesized. The solvent‐mediated supramolecular self‐assembling of these coil‐rod‐coil molecules resulted in rolled‐up nanotubes, nanofibers, submicron sized belts, needle‐like microcrystals, and amorphous structures. The self‐assembling behaviors of these coil‐rod‐coil molecules have been systematically investigated to reveal the relationship between the supramolecularly self‐assembled nanostructures and their chemical structures. With respect to the formation of rolled‐up nanotubes by self‐assembly of coil‐rod‐coil molecules, we have systematically investigated the following three influencing structural factors: 1) the alkyl chain length; 2) the central mesogenic group; (3) the linker type. These studies disclosed the key structural features of coil‐rod‐coil molecules for the formation of rolled‐up nanotubes.  相似文献   

8.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


9.
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake.  相似文献   

10.
We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis‐zinc(II)‐salphen complex and various ditopic nitrogen ligands. The use of the bis‐zinc(II)‐salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well‐defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands.  相似文献   

11.
12.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

13.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

14.
Simultaneous coordination‐association and electrostatic‐repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self‐assembly of artificial aqueous polymer single‐chain nanoparticles (SCNPs). Herein, the construction and self‐assembly of dative‐bonded aqueous SCNPs are reported via simultaneous coordination‐association and electrostatic‐repulsion interactions within single chains of histamine‐based hydrophilic block copolymer. The electrostatic‐repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)‐coordination leads to the intramolecular association and single‐chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative‐bonded block and steric shielding of nonionic water‐soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media‐sensitive phase‐transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme‐inspired smart aqueous catalysts.

  相似文献   


15.
16.
17.
18.
19.
Liquid‐assisted grinding (LAG) was used to combine three levels of molecular self‐assembly into a one‐pot mechanochemical approach for the construction of metal–organic materials. The approach was applied for the construction of three adducts of cobalt(II) dibenzoylmethanate with isonicotinamide, nicotinamide and imidazole, to screen for their inclusion compounds. The one‐pot process consists of: i) The coordination‐driven binding of addends to the equatorially‐protected metal ion, resulting in “wheel‐and‐axle”‐shaped complexes; ii) self‐assembly of resulting complexes by way of hydrogen‐bonded synthons to form metal–organic inclusion hosts; iii) in situ inclusion of the grinding liquid in the resulting host. This approach provided quantitatively and within 20 min the known inclusion compounds of the bis(isonicotinamide) adduct in a single synthetic step. Changing the liquid phase in LAG was used to explore the inclusion behaviour of new wheel‐and‐axle adducts with nicotinamide and imidazole, revealing several inclusion compounds, as well as two polymorphs, of the bis(nicotinamide) host. Preliminary results suggest that one‐pot LAG is superior to solution synthesis in screening for metal–organic inclusion compounds. The difference between the methods is rationalised in terms of reactant solubility and solvent competition. In contrast to the nicotinamide adduct, the bis(imidazole) adduct did not form inclusion compounds. The difference in the inclusion properties of the two adducts is rationalised by structural information gathered by single crystal and powder X‐ray diffraction.  相似文献   

20.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号