首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two new palladium complexes with a pyracene‐linked bis‐imidazolylidene (pyrabim) group have been obtained and fully characterized. The related monometallic analogues were obtained from the coordination of an acetanaphthene‐supported N‐heterocyclic carbene (NHC). The catalytic properties of all complexes were studied in the acylation of aryl halides with hydrocinnamaldehyde, and in the Suzuki–Miyaura coupling of aryl halides and aryl boronic acids. The results show that the presence of a second metal in the dimetallic complexes induces some benefits in the catalytic behavior of the complexes. This effect is more pronounced in the Suzuki–Miyaura coupling, for which the dimetallic complexes exhibit significantly higher activity than their monometallic counterparts.  相似文献   

4.
5.
Triethylamine hydroiodide crystals were formed during Sonogashira reactions; after complete reaction the solution retains a characteristic light color (see picture). Very sluggish Sonogashira reactions of electron‐enriched aryl diiodides have been carried out in high yield in an oxygen‐free, two‐chamber reaction system. The formation of triethylamine hydroiodide crystals was monitored to determine the completion of reaction.

  相似文献   


6.
7.
8.
Novel acyclic Pd(II)‐N‐heterocyclic carbene (NHC) metallacrown ethers 5a , 5b have been synthesized. Reaction of the imidazolium salts bearing a long polyether chain with Ag2O afforded Ag‐NHC complexes, which then reacted as carbene transfer agent with PdCl2(MeCN)2 to give the desired acyclic Pd(II)‐NHC metallacrown ether complexes 5a and 5b . The 1H NMR and 13C NMR spectra show 5a and 5b exist as mixtures of cis and trans isomers in solution. The trans isomer of 5a was characterized by X‐ray diffraction, which clearly demonstrated two pseudo‐crown ether cavities in trans‐ 5a . Pd(II)‐NHC complexes 5a and 5b have been shown to be highly effective in the Suzuki‐Miyaura reactions of a variety of aryl bromides in neat water without the need of inert gas protection.  相似文献   

9.
10.
Palladium-catalyzed C-C and C-N bond-forming reactions are among the most versatile and powerful synthetic methods. For the last 15 years, N-heterocyclic carbenes (NHCs) have enjoyed increasing popularity as ligands in Pd-mediated cross-coupling and related transformations because of their superior performance compared to the more traditional tertiary phosphanes. The strong sigma-electron-donating ability of NHCs renders oxidative insertion even in challenging substrates facile, while their steric bulk and particular topology is responsible for fast reductive elimination. The strong Pd-NHC bonds contribute to the high stability of the active species, even at low ligand/Pd ratios and high temperatures. With a number of commercially available, stable, user-friendly, and powerful NHC-Pd precatalysts, the goal of a universal cross-coupling catalyst is within reach. This Review discusses the basics of Pd-NHC chemistry to understand the peculiarities of these catalysts and then gives a critical discussion on their application in C-C and C-N cross-coupling as well as carbopalladation reactions.  相似文献   

11.
12.
13.
Combined spectroscopic, crystallographic, and kinetic studies of the mechanism of aromatic amination with the efficient dinuclear Pd precatalyst [Pd2Cl(μ‐Cl)PtBu2(Bph‐Me)] (Bph‐Me=2′‐methyl‐[1,1′‐biphenyl]‐2‐yl) have revealed overlapping, yet cooperative, mechanistic scenarios, the relative weights of which are strongly influenced by the products formed as the reaction proceeds. The stability and evolution of the precatalyst in solution has been studied and several metalation pathways that point to a single monoligated intermediate have been identified. Our work sheds light on the nature of the catalytic species involved in the process and on the structure of the corresponding catalytic network.  相似文献   

14.
15.
Dichloro‐bis(aminophosphine) complexes are stable depot forms of palladium nanoparticles and have proved to be excellent Suzuki–Miyaura catalysts. Simple modifications of the ligand (and/or the addition of water to the reaction mixture) have allowed their formation to be controlled. Dichlorobis[1‐(dicyclohexylphosphanyl)piperidine]palladium ( 3 ), the most active catalyst of the investigated systems, is a highly convenient, reliable, and extremely active Suzuki catalyst with excellent functional group tolerance that enables the quantitative coupling of a wide variety of activated, nonactivated, and deactivated and/or sterically hindered functionalized and heterocyclic aryl and benzyl bromides with only a slight excess (1.1–1.2 equiv) of arylboronic acid at 80 °C in the presence of 0.2 mol % of the catalyst in technical grade toluene in flasks open to the air. Conversions of >95 % were generally achieved within only a few minutes. The reaction protocol presented herein is universally applicable. Side‐products have only rarely been detected. The catalytic activities of the aminophosphine‐based systems were found to be dramatically improved compared with their phosphine analogue as a result of significantly faster palladium nanoparticle formation. The decomposition products of the catalysts are dicyclohexylphosphinate, cyclohexylphosphonate, and phosphate, which can easily be separated from the coupling products, a great advantage when compared with non‐water‐soluble phosphine‐based systems.  相似文献   

16.
17.
18.
19.
20.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号