共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhang J Thomas DS Berners-Price SJ Farrell N 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(21):6391-6405
Reported herein is a detailed study of the kinetics and mechanism of formation of a 1,4-GG interstrand cross-link by the dinuclear platinum anticancer compound [15N][{cis-PtCl(NH3)2}2{mu-NH2(CH2)6NH2}]2+ (1,1/c,c (1)). The reaction of [15N]1 with 5'-{d(ATATGTACATAT)2} (I) has been studied by [1H,15N] HSQC NMR spectroscopy in the presence of different concentrations of phosphate. In contrast with the geometric trans isomer (1,1/t,t), there was no evidence for an electrostatic preassociation of 1,1/c,c with the polyanionic DNA surface, and the pseudo-first-order rate constant for the aquation of [(15)N]1 was actually slightly higher (rather than lower) than that in the absence of DNA. When phosphate is absent, the overall rate of formation of the cross-link is quite similar for the two geometric isomers, occurring slightly faster for 1,1/t,t. A major difference in the DNA binding pathways is the observation of phosphate-bound intermediates only in the case of 1,1/c,c. 15 mM phosphate causes a dramatic slowing in the overall rate of formation of DNA interstrand cross-links due to both the slow formation and slow closure of the phosphate-bound monofunctional adduct. A comparison of the molecular models of the bifunctional adducts of the two isomers shows that helical distortion is minimal and globally the structures of the 1,4 interstrand cross-links are quite similar. The effect of carrier ligand was investigated by similar studies of the ethylenediamine derivative [15N]1-en. A pKa value of 5.43 was determined for the [15N]1,1/c,c-en diaquated species. The rate of reaction of [15N]1-en with duplex I is similar to that of 1,1/c,c and the overall conformation of the final adduct appears to be similar. The significance of these results to the development of "second-generation" polynuclear platinum clinical candidates based on the 1,1/c,c chelate (dach) series is discussed. 相似文献
3.
4.
5.
6.
Jianhui Zhu Yongmei Zhao Dr. Yanyan Zhu Ziyi Wu Miaoxin Lin Weijiang He Dr. Yan Wang Dr. Guangju Chen Prof. Dr. Lei Dong Dr. Junfeng Zhang Prof. Dr. Yi Lu Prof. Dr. Zijian Guo Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(21):5245-5253
The center of it all : An antitumor‐active trinuclear platinum complex forms unprecedented interstrand cross‐linked triadducts with 18‐mer DNA duplexes (see figure; complex in yellow with the platinum centers in red) and behaves differently from its dinuclear analogue.
7.
Stephane Bandeira Jorge Gonzalez‐Garcia Evangelina Pensa Tim Albrecht Ramon Vilar 《Angewandte Chemie (International ed. in English)》2018,57(1):310-313
There has been increasing interest in the development of small molecules that can selectively bind to G‐quadruplex DNA structures. The latter have been associated with a number of key biological processes and therefore are proposed to be potential targets for drug development. Herein, we report the first example of a reduction‐activated G‐quadruplex DNA binder. We show that a new octahedral platinum(IV)–salphen complex does not interact with DNA in aqueous media at pH 7.4; however, upon addition of bioreductants such as ascorbic acid or glutathione, the compound is readily reduced to the corresponding square planar platinum(II) complex. In contrast to the parent platinum(IV) complex, the in situ generated platinum(II) complex has good affinity for G‐quadruplex DNA. 相似文献
8.
Raymond Wai‐Yin Sun Dr. Carrie Ka‐Lei Li Dr. Dik‐Lung Ma Dr. Jessie Jing Yan Chun‐Nam Lok Dr. Chung‐Hang Leung Dr. Nianyong Zhu Dr. Chi‐Ming Che Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(10):3097-3113
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities. 相似文献
9.
10.
11.
12.
The interactions of [Pt(CNN)(4-dpt)]PF(6), (1; 4-dpt=2,4-diamino-6-(4-pyridyl)-1,3,5-triazine, HCNN=6-phenyl-2,2'-bipyridine) with double-stranded DNA, poly(dA-dT)(2), and poly(dG-dC)(2) were examined by spectroscopic, electrophoretic, and hydrodynamic methods. The spectroscopic data were analyzed with McGhee, van't Hoff, and Gibbs-Helmholtz equations. In a comparative study, [Pt(CNN)(py)]PF(6) (2; py=pyridine) was prepared and the nature of its binding towards DNA was investigated [preliminary results: ChemBioChem 2003, 4, 62-68]. For reactions with calf thymus DNA at 20 degrees C, the intrinsic binding constants for 1 and 2 are (4.6+/-0.2)x10(5) and (2.3+/-0.3)x10(4) mol(-1) dm(3), respectively. Results of DNA-binding reactions revealed that 1 and 2 preferentially bind to the AT sequence of duplex DNA. Intercalation is the preferred binding mode for 2, whereas both intercalation and minor-groove binding are observed for 1. Complex 1 is cytotoxic against a number of carcinoma cell lines, including KB-3-1, CNE-3, and HepG2, and remains potent against multidrug- or cisplatin-resistant KB-V-1 and CNE1 cell lines, for which the resistance ratios are 1.6 and 1.5, respectively. Importantly, 1 is almost an order of magnitude less toxic to the normal cell line CCD-19Lu (IC(50)=176+/-1.7 microM) and it selectively induced apoptosis leading to cancer cell death with less than 5 % detectable necrosis. 相似文献
13.
Qian‐Xiong Zhou Dr. Wan‐Hua Lei Jing‐Rong Chen Chao Li Yuan‐Jun Hou Xue‐Song Wang Prof. Bao‐Wen Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(10):3157-3165
Ruthenium(II) polypyridyl complexes with long‐wavelength absorption and high singlet‐oxygen quantum yield exhibit attractive potential in photodynamic therapy. A new heteroleptic RuII polypyridyl complex, [Ru(bpy)(dpb)(dppn)]2+ (bpy=2,2′‐bipyridine, dpb=2,3‐bis(2‐pyridyl)benzoquinoxaline, dppn=4,5,9,16‐tetraaza‐dibenzo[a,c]naphthacene), is reported, which exhibits a 1MLCT (MLCT: metal‐to‐ligand charge transfer) maximum as long as 548 nm and a singlet‐oxygen quantum yield as high as 0.43. Steady/transient absorption/emission spectra indicate that the lowest‐energy MLCT state localizes on the dpb ligand, whereas the high singlet‐oxygen quantum yield results from the relatively long 3MLCT(Ru→dpb) lifetime, which in turn is the result of the equilibrium between nearly isoenergetic excited states of 3MLCT(Ru→dpb) and 3ππ*(dppn). The dppn ligand also ensures a high binding affinity of the complex towards DNA. Thus, the combination of dpb and dppn gives the complex promising photodynamic activity, fully demonstrating the modularity and versatility of heteroleptic RuII complexes. In contrast, [Ru(bpy)2(dpb)]2+ shows a long‐wavelength 1MLCT maximum (551 nm) but a very low singlet‐oxygen quantum yield (0.22), and [Ru(bpy)2(dppn)]2+ shows a high singlet‐oxygen quantum yield (0.79) but a very short wavelength 1MLCT maximum (442 nm). 相似文献
14.
15.
Dr. Yao Zhao Dr. Julie A. Woods Dr. Nicola J. Farrer Kim S. Robinson Jitka Pracharova Dr. Jana Kasparkova Olga Novakova Huilin Li Dr. Luca Salassa Dr. Ana M. Pizarro Dr. Guy J. Clarkson Dr. Lijiang Song Prof. Dr. Viktor Brabec Prof. Dr. Peter J. Sadler 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(29):9578-9591
Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side‐effects. Photoactivatable PtIV prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X‐ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans‐[Pt(N3)2(OH)2(MA)(Py)] ( 1 ; MA=methylamine, Py=pyridine) and trans,trans,trans‐[Pt(N3)2(OH)2(MA)(Tz)] ( 2 ; Tz=thiazole), and interpret their photophysical properties by TD‐DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1 p and 1 q . Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin‐resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf‐thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono‐ and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross‐links, with evidence for DNA strand cross‐linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin‐type lesions. The photo‐induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the PtII compounds trans‐[PtCl2(MA)(Py)] ( 5 ) and trans‐[PtCl2(MA)(Tz)] ( 6 ). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1 , whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation. 相似文献
16.
Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G‐Quadruplex Telomeric DNA by an Anticancer Copper–Acridine–ATCUN Complex 下载免费PDF全文
Zhen Yu Menglu Han Dr. James A. Cowan 《Angewandte Chemie (International ed. in English)》2015,54(6):1901-1905
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK‐Acr) has been designed that targets G‐quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK‐Acr catalyst to selectively bind and cleave the G‐quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) experiments. CuGGHK‐Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. 相似文献
17.
18.
Hyeona Kang Prof. Dr. Jaeheung Cho Dr. Kyung‐Bin Cho Takashi Nomura Prof. Dr. Takashi Ogura Prof. Dr. Wonwoo Nam 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(42):14119-14125
Mononuclear MnIII–peroxo and dinuclear bis(μ‐oxo)MnIII2 complexes that bear a common macrocyclic ligand were synthesized by controlling the concentration of the starting MnII complex in the reaction of H2O2 (i.e., a MnIII–peroxo complex at a low concentration (≤1 mM ) and a bis(μ‐oxo)MnIII2 complex at a high concentration (≥30 mM )). These intermediates were successfully characterized by various physicochemical methods such as UV–visible spectroscopy, ESI‐MS, resonance Raman, and X‐ray analysis. The structural and spectroscopic characterization combined with density functional theory (DFT) calculations demonstrated unambiguously that the peroxo ligand is bound in a side‐on fashion in the MnIII–peroxo complex and the Mn2O2 diamond core is in the bis(μ‐oxo)MnIII2 complex. The reactivity of these intermediates was investigated in electrophilic and nucleophilic reactions, in which only the MnIII–peroxo complex showed a nucleophilic reactivity in the deformylation of aldehydes. 相似文献
19.
The cis‐Diammineplatinum(II) Complex of Curcumin: A Dual Action DNA Crosslinking and Photochemotherapeutic Agent 下载免费PDF全文
Koushambi Mitra Srishti Gautam Prof. Paturu Kondaiah Prof. Akhil R. Chakravarty 《Angewandte Chemie (International ed. in English)》2015,54(47):13989-13993
[Pt(cur)(NH3)2](NO3) ( 1 ), a curcumin‐bound cis‐diammineplatinum(II) complex, nicknamed Platicur, as a novel photoactivated chemotherapeutic agent releases photoactive curcumin and an active platinum(II) species upon irradiation with visible light. The hydrolytic instability of free curcumin reduces upon binding to platinum(II). Interactions of 1 with 5′‐GMP and ct‐DNA indicated formation of platinum‐bound DNA adducts upon exposure to visible light (λ=400–700 nm). It showed apoptotic photocytotoxicity in cancer cells (IC50≈15 μM ), thus forming ?OH, while remaining passive in the darkness (IC50>200 μM ). A comet assay and platinum estimation suggest Pt–DNA crosslink formation. The fluorescence microscopic images showed cytosolic localization of curcumin, thus implying possibility of dual action as a chemo‐ and phototherapeutic agent. 相似文献
20.
Dr. Jaroslav Malina Prof. Dr. Nicholas P. Farrell Prof. Dr. Viktor Brabec 《化学:亚洲杂志》2011,6(6):1566-1574
The trinuclear platinum compound [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464) belongs to the polynuclear class of platinum‐based anticancer agents. These agents form in DNA long‐range (Pt,Pt) interstrand cross‐links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross‐links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4‐interstrand cross‐links) exist as two distinct conformers, which are not interconvertible, not only if these cross‐links are formed in the 5′‐5′, but also in the less‐usual 3′‐3’ direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross‐links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross‐links available to BBR3464 may all contribute substantially to its cytotoxicity. 相似文献