首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biodegradable inorganic nanovector based on a layered double hydroxide (LDH) holds great promise for gene and drug delivery systems. However, in vivo targeted delivery of genes through LDH still remains a key challenge in the development of RNA interference therapeutics. Here, we describe in vivo and in vitro delivery system for Survivin siRNA (siSurvivin) assembled with passive LDH with a particle size of 100 nm or active LDH conjugated with a cancer overexpressing receptor targeting ligand, folic acid (LDHFA), conferring them an ability to target the tumor by either EPR‐based clathrin‐mediated or folate receptor‐mediated endocytosis. When not only transfected into KB cells but also injected into xenograft mice, LDHFA/siSurvivin induced potent gene silencing at mRNA and protein levels in vitro, and consequently achieved a 3.0‐fold higher suppression of tumor volume than LDH/siSurvivin in vivo. This anti‐tumor effect was attributed to a selectively 1.2‐fold higher accumulation of siSurvivin in tumor tissue compared with other organs. Targeting to the tumor with inorganic nanovector can guide and accelerate an evolution of next‐generation theranosis system.  相似文献   

2.
As the outmost coating of cells, the pericellular matrix (PCM) involved in various cellular functions has been exploited previously to be able to accumulate 120 nm Au nanoparticles (NPs), adjust their diffusion coefficient similar to that of membrane receptors, and enhance their uptake efficiency. In this study, the interactions between PCM and NPs with different sizes and materials were systematically investigated. We found that PCM can selectively enhance the retention and cellular uptake of NPs with diameters from 50 to 180 nm, but has no enhancement effect for 20 nm NPs. Identical behaviors of PCM was observed for both Au NPs and polystyrene NPs, indicating that this unique phenomenon is more related to the dimensions of the NPs. The study of single-particle tracking of 50–180 nm NPs on the surface of thick PCM cells revealed that PCM actively adjusts the diffusion coefficient of NPs to ~0.1 μm2/s regardless of their sizes. By blocking the receptor-mediated endocytosis (RME) pathway with four different inhibitors, this active role of PCM can be effectively suppressed, further confirming that the trapping and retention of NPs by PCM is an inherent biological function. These findings provided new insights for better understanding of the RME pathway and may have promising NP-based applications for controlled drug delivery and therapy in biomedicine.
Figure
In this study, we revealed the active role of pericellular matrix (PCM) during the endocytosis of large nanoparticles (NPs). PCM can selectively enhance the retention of NPs larger than 50 nm and adjust the diffusion coefficient of large-sized NPs to ~0.1 μm2/s regardless of their sizes, which is beneficial for the binding of NPs with receptors and followed cellular endocytosis. This active role can be suppressed by endocytosis inhibitors, suggesting the trapping of PCM on NPs is an integral part of receptor-mediated endocytosis  相似文献   

3.
The mechanisms associated with the cellular internalization of nanomedicines must be carefully considered when designing drug‐ and vaccine‐delivery systems. The cellular fate and effects of nanomedicines depend to a large extent on the cell uptake routes. A self‐assembled mannan nanogel is developed as a vaccination platform for antigen and adjuvant delivery. The mannan nanogel uptake by murine bone‐marrow‐derived macrophages is found to be time‐, concentration‐, and energy‐dependent, involving mannose‐receptor‐mediated phagocytosis and clathrin‐mediated endocytosis. The nanogel is also visualized in the cytosol suggesting endolysosomal escape. These results indicate that mannan nanogel is a promising versatile carrier for intracellular delivery of vaccines or therapeutic agents.

  相似文献   


4.
This study describes the preparation of mucoadhesive chitosan nanoparticles containing metronidazole (MZ) intended for colon‐specific delivery. The chitosan nanoparticles were prepared by the ionic gelation method and their in vitro properties were studied. The release profiles of MZ from the nanoparticles were determined by UV–Vis absorption measurement at λmax 278 nm. Scanning electron microscopy was used for morphology observation. The nanoparticles exhibited mucoadhesive properties, which diminished with increasing drug content. The nanoparticles with a particle size range between 200 and 300 nm exhibited excellent mucoadhesive properties. The results show that the formulated nanoparticles have succeeded in controlling the release of MZ over a 12‐hr period. In conclusion, the release of MZ was found to be dependent upon the composition of the nanoparticles, the ratio of the components and possible particle size, as well as bioadhesive ability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Tryptanthrin is an ancient medicine which recently was also found to have a function of downregulating multidrug resistance (MDR). However, tryptanthrin is insoluble in water, which limits its availability for delivery into cancer cells. There is a need to improve delivery systems to increase the inhibition of MDR. The aim of this study was to employ nanoparticles encapsulating tryptanthrin to improve the delivery and promote the sustained release of this drug. The approach was to encapsulate tryptanthrin in various nanoparticles, including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid emulsions (LEs). We compared the particle size and zeta potential of these nanoparticles, and evaluated the partitioning behavior of tryptanthrin in them. We also determined the release kinetics of tryptanthrin from these nanoparticles. Moreover, cellular cytotoxicity toward and uptake of tryptanthrin-loaded nanoparticles by human breast cancer cells were determined. We found that the mean particle size of NLCs was lower, and the partition coefficient was higher than those of SLNs, and an increased tryptanthrin release rate was found with the NLC delivery system. NLCs achieved the sustained release of tryptanthrin without an initial burst. In particular, the NLC-C formulation, composed of a mixture of Compritol and squalene as the core materials, showed the highest release rate and cytotoxic effect. Confocal laser scanning microscopic images confirmed drug internalization into cells which enhanced the endocytosis of the particles. These results suggested that NLCs can potentially be exploited as a drug carrier for topical or intravenous use in the future.  相似文献   

6.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

7.
《化学:亚洲杂志》2017,12(1):21-26
Dendritic platinum nanoparticles (DPNs) have been synthesized from l ‐ascorbic acid and an amphiphilic non‐ionic surfactant (Brij‐58) via a sonochemical method. The particle size and shape of the DPNs could be tuned by changing the reduction temperature, resulting in a uniform DPN with a size of 23 nm or 60 nm. The facets of DPNs have been studied by high‐resolution transmission electron microscopy. The cytotoxicity of DPNs has been investigated using human embryonic kidney cells (HEK‐293), and the biological adaptability exhibited by DPNs has opened a pathway to biomedical applications such as drug‐delivery systems, photothermal treatment, and biosensors.  相似文献   

8.
In this work the synthesis and characterization of a magnetic composite is described. It was prepared by deposition of Nap‐Mg‐Al‐LDH on Fe3O4 by a coprecipitation method. The structures of the obtained products were studied by powder X‐ray diffraction, FT‐IR spectroscopy, elemental analysis, and thermogravimetric analysis. From the X‐ray diffraction results, it was found that Fe3O4 was successfully distributed into the layered double hydroxide (LDH) phase. Furthermore, the increase in the basal spacing of LDHs from 0.881 nm to 2.157 nm shows that naproxen was successfully intercalated into the interlayer space. The particle size was estimated using transmission electron microscopy. Thermogravimetric studies indicate that the thermal stability of naproxen was enhanced after intercalation. Moreover, in vitro drug release experiments in phosphate buffer solution (pH = 7.4) were investigated.  相似文献   

9.
Fluorescent single‐wall carbon nanotubes (SWCNTs) were prepared by mixing cut SWCNTs with acridine orange (AO). The optical absorbance and fluorescence characteristics of AO–SWCNT conjugates display interesting pH‐dependent properties. Fluorescence microscopy in combination with transmission electron microscopy proves that AO–SWCNTs can enter HeLa cells and are located inside lysosomes. The endocytosis‐inhibiting tests show that the clathrin‐mediated endocytosis is a key step in the internalization process. The internalized AO–SWCNTs remain inside lysosomes for more than a week and have little effect on cell proliferation. These findings may be useful in understanding the SWCNT‐based intracellular drug delivery mechanism and help to develop new intracellular drug transporters.  相似文献   

10.
Cationic nanocarrier mediated intracellular therapeutic agent delivery acts as a double-edged sword: the carriers promote cellular uptake, but interact nonspecifically and strongly with negatively charged endogenic proteins and cell membranes, which results in aggregates and high cytotoxicity. The present study was aimed at exploring zwitterionic polyaspartamide derivative nanoparticles for efficient intracellular delivery with low cytotoxicity. Poly(aspartic acid) partially grafted tetraethylenepentamine (PASP-pg-TEPA) with different isoelectric points (IEPs) was synthesized. The PASP-pg-TEPA formed zwitterionic nanoparticles with an irregular core and a well-defined shell structure in aqueous medium. Their particle size decreased from about 300 to 80 nm with an increase of the IEP from 7.5 to 9.1. The surface charge of the PASP-pg-TEPA nanoparticles could be tuned from positive to negative with a change of the pH of the medium. The nanoparticles with an IEP above 8.5 exhibited good stability under simulated physiological conditions. It was noted that the zwitterionic PASP-pg-TEPA nanoparticles displayed highly efficient cellular uptake in HeLa cells (approximately 99%) in serum-containing medium and did not adversely affect the cell viability at concentrations up to 1 mg/mL. Furthermore, thermodynamic analysis using isothermal titration calorimetry provided direct evidence that these zwitterionic nanoparticles had low binding affinities for serum protein. Therefore, the zwitterionic PASP-pg-TEPA nanoparticles could overcome limitations of cationic nanocarriers and achieve efficient intracellular delivery with low cytotoxicity.  相似文献   

11.
A cancer‐targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole‐5‐carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD‐PEI‐BSeC forms nanoparticles in aqueous solution with a core–shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor‐mediated endocytosis via clathrin‐mediated and nystatin‐dependent lipid raft‐mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS‐mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium‐containing cancer‐targeted theranostics.

  相似文献   


12.
In this article, a novel zwitterionic conjugated polyelectrolyte containing tetraphenylethene unit was synthesized via Pd‐catalyzed Sonogashira reaction. The resulting polymer (P2), which exhibited typical aggregation‐induced emission (AIE) properties, was weakly fluorescent in dilute DMSO solution and showed bright fluorescence emissions when aggregated in DMSO/water mixtures or fabricated into conjugated polymer nanoparticles (CPNs). The nanoparticles from P2 could be prepared by reprecipitation method with an average diameter around 23 nm. Notably, the cell‐staining efficiencies of lipid‐P2 nanoparticles could be enhanced with lipid encapsulation and these nanoparticles were endocytosed via caveolae‐mediated and clathrin‐mediated endocytosis pathways. Furthermore, the lipid‐P2 nanoparticles with low cytotoxicity, high photostability and efficient cell staining ability could be employed for in vitro detection of Fe3+ ions in A549 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1686–1693  相似文献   

13.
Poly (D,L-lactide-co-glycolide) nanoparticles loaded with linamarin as a model drug were successfully prepared using the double emulsion solvent evaporation technique. The physicochemical characterization of the formulated nanoparticles revealed that they were spherical, nonaggregated, and negatively charged, with good drug encapsulation efficiencies (>50%) and average particle sizes <200 nm. Interestingly, all the nanoparticles exhibited dibasic release profiles with a starting burst release within the first 8 h, followed by a controlled release phase lasting four days. Thus, linamarin-loaded nanoparticles indicate a promising candidate for controlled drug release applications.  相似文献   

14.
Pure, perfectly spherical cellulose nanoparticles with sizes of ≈80-260 nm can be prepared by dialysis starting from trimethylsilylcellulose (TMSC). The aqueous suspensions obtained are storable for several months. Subsequent covalent labeling of the cellulose nanoparticles with FITC has no influence on particle size, shape, and stability. The particles can be sterilized and suspended in biological media without structural changes. Incorporation of FITC-labeled cellulose nanoparticles into living human fibroblasts is studied using confocal LSM. In contrast to cellulose nanocrystals, fast cellular uptake is found for the nanospheres without transfection reagents or attachment of a receptor molecule. This suggests an influence of the geometry of biocompatible nanomaterials on endocytosis.  相似文献   

15.
We report a simple but efficient method to prepare stable homogeneous suspensions containing monodispersed MgAl layered double hydroxide (LDH) nanoparticles that have wide promising applications in cellular drug (gene) delivery, polymer/LDH nanocomposites, and LDH thin films for catalysis, gas separation, sensing, and electrochemical materials. This new method involves a fast coprecipitation followed by controlled hydrothermal treatment under different conditions and produces stable homogeneous LDH suspensions under variable hydrothermal treatment conditions. Moreover, the relationship between the LDH particle size and the hydrothermal treatment conditions (time, temperature, and concentration) has been systematically investigated, which indicates that the LDH particle size can be precisely controlled between 40 and 300 nm by adjusting these conditions. The reproducibility of making the identical suspensions under identical conditions has been confirmed with a number of experiments. The dispersion of agglomerated LDH aggregates into individual LDH crystallites during the hydrothermal treatment has been further discussed. This method has also been successfully applied to preparing stable homogeneous LDH suspensions containing various other metal ions such as Ni(2+), Fe(2+), Fe(3+), Co(2+), Cd(2+), and Gd(3+) in the hydroxide layers and many inorganic anions such as Cl(-), CO(3)(2-), NO(3)(-), and SO(4)(2-).  相似文献   

16.
Atherosclerosis is a widespread and hazardous disease characterized by the formation of arterial plaques mostly composed of fat, cholesterol, and calcium ions. The direct solubilization of cholesterol represents a promising, atheroprotective strategy to subside lipid blood levels and reverse atherosclerosis. This study deals with the in‐depth analysis of polymer‐mediated cholesterol dissolution inside living human cells. To this end, a recently described multifunctional block‐polymer is labeled with Rhodamine B (RhoB) to investigate its interaction with cells via fluorescence microscopy. This gives insight into the cellular internalization process of the polymer, which appears to be clathrin‐ and caveolae/raft‐dependent endocytosis. In cell single particle tracking reveals an active transport of RhoB polymer including structures. Förster resonance energy transfer (FRET) measurements of cells treated with a fluorophore‐tagged cholesterol derivative and the RhoB polymer indicates the uptake of cholesterol by the polymeric particles. Hence, these results present a first step toward possible applications of cholesterol‐absorbing polymers for treating atherosclerosis.  相似文献   

17.
Natural biopolymers are widely used in the field of drug and gene delivery. In this study, alginate nanoparticles were prepared using water-in-oil microemulsion as a template followed by calcium crosslinking of guluronic acid units of alginate polymer. After collected by ultracentrifugation, alginate nanoparticles were analyzed by electron microscopy to obtain the size and morphology which were varied with the ratio of water, oil, and surfactant used. To examine the potency of Ca-alginate nanoparticles as carriers for gene delivery, GFP-encoding plasmids were encapsulated in these nanoparticles to investigate the degree of endocytosis by NIH 3T3 cells and ensuing transfection rate. Our results showed that Ca-alginate nanoparticles with an average size around 80 nm in diameter are very efficient gene carriers, in comparison with plasmid DNA condensed by polyethyleneimine (PEI).  相似文献   

18.
We had previously developed surface-modified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for use as a cellular drug delivery system. The cellular uptake of PLGA-NPs was mediated predominantly by endocytosis, and this uptake was increased by surface modifications with polymers, such as chitosan (CS) and polysorbate 80 (P80). In the present study, we prepared a cell-sized giant unilamellar vesicle (GUV) that mimics a cell membrane to investigate the interaction between cell membranes and NPs. Endocytosis-like uptake of NPs into a GUV was observed when the NPs were modified with nonionic surfactant P80 probably due to change in viscoelasticity and enhanced fusion activity of the membrane induced by P80. In contrast, unmodified NPs and those modified with CS were not internalized into a GUV. These results suggest that surface properties of PLGA-NPs are an important formulation parameter for their interaction with lipid membranes.  相似文献   

19.
The tri-component copolymer poly(lactide-co-glycolide-co-caprolactone) (PLGC) was synthesized to prepare nanoparticles by the modified spontaneous emulsification solvent diffusion method (modified-SESD method); and the method was also modified by using the Tween60 instead of poly(vinyl alcohol) (PVA) as dispersing agent. The obtained nanoparticles have spherical shape and good particle distribution with mean size in the range from 100 to 200 nm. The in vitro degradation behaviour of PLGC nanoparticles was investigated. It was found that PLGC nanoparticles could remain stable during the degradation with no agglomeration. Compared with PLA and PLGA nanoparticles, the degradation rate of PLGC nanoparticles is faster. After 9 weeks of hydrolysis, the Mn of PLGC is less by 10% of the original Mn. The mean radius of the nanoparticles increases from 68 nm to 80 nm continuously during the first stage, and after 4 weeks of degradation, the particles' size decreases gradually from 80 nm to about 40 nm. These results suggest that the PLGC nanoparticles may show degradation-controlled drug release behaviour and seem to be a promising drug delivery system.  相似文献   

20.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号