首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

2.
制备了乙酰胆碱酯酶/Nafion/普鲁士蓝修饰的玻碳电极,测试了该修饰电极检测有机农药西维因(carbaryl)和敌百虫(trichlorfon)的性能指标。 利用原子力显微镜和电化学技术研究了电极的构造及其对于有机农药检测性能指标的影响。 结果表明,乙酰胆碱酯酶均匀地分散到Nafion/普鲁士蓝修饰的玻碳电极上。 在最优的实验条件下,构筑的修饰电极检测西维因和敌百虫的线性范围分别为0.01~0.5 μmol/L及2.0~10.0 μmol/L和0.02~1.0 μmol/L及2.0~8.0 μmol/L,检出限分别为5.0和10.0 nmol/L。 并对模拟的实际样品进行了检测,发现该方法有较高的检测灵敏度、较好的重复性和抗干扰性。  相似文献   

3.
《Electroanalysis》2006,18(18):1842-1846
Nanosized Prussian blue (PB) particles were synthesized with a chemical reduction method and then the PB nanoparticles were assembled on the surface of multiwall carbon nanotubes modified glassy carbon electrode (PB/MWNTs/GCE). The results showed that the PB/MWNTs nanocomposite exhibits a remarkably improved catalytic activity towards the reduction of hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the PB/MWNTs platform by an electrochemically polymerized o‐phenylenediamine (OPD) film to construct an amperometric glucose biosensor. The biosensor exhibited a wide linear response up to 8 mM with a low detection limit of 12.7 μM (S/N=3). The Michaelis–Menten constant Km and the maximum current imax of the biosensor were 18.0 mM and 4.68 μA, respectively. The selectivity and stability of the biosensor were also investigated.  相似文献   

4.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

5.
Fe3+可与电沉积在玻碳电极表面的对氨基苯磺酸发生静电吸附作用并与[Fe(CN)6]4-形成普鲁士蓝(PB),进一步交替重复吸附Fe3+和[Fe(CN)6]4-反应,形成PB晶体.该晶体对还原过氧化氢(H2O2)具有很高的电化学活性.通过循环伏安法、交流阻抗法和计时电流法对传感器进行了电化学表征.研究了该传感器对H2O2的电催化作用,探讨了工作电位,PH值及干扰物质对响应电流的影响.结果表明,在磷酸盐缓冲溶液中(pH =5.4,0.1 mol/L),响应电流与H2O2的浓度在0.97 ~ 32.33 mmol/L范围内具有良好的线性关系,相关系数为0.9993,传感器的响应时间小于5 s,检测限为0.48 mmol/L( S/N为3).  相似文献   

6.
Jiang Y  Zhang X  Shan C  Hua S  Zhang Q  Bai X  Dan L  Niu L 《Talanta》2011,85(1):76-81
Prussian blue (PB) was grown compactly on graphene matrix by electrochemical deposition. The as-prepared PB-graphene modified glassy carbon electrode (PB-graphene/GCE) showed excellent electrocatalytic activity towards both the reduction of hydrogen peroxide and the oxidation of hydrazine, which could be attributed to the remarkable synergistic effect of graphene and PB. The PB-graphene/GCE showed sensitive response to H2O2 with a wide linear range of 10-1440 μM at 0.0 V, and to hydrazine with a wide linear range of 10-3000 μM at 0.35 V. The detection limit was 3 μM and 7 μM, respectively, and both of them had rapid response within 5 s to reach 95% steady state response. The wide linear range, good selectivity and long-time stability of the PB-graphene/GCE make it possible for the practical amperometric detection of hydrogen peroxide and hydrazine.  相似文献   

7.
合成了一种普鲁士蓝/二氧化锰(PB/MnO2)复合材料。表征结果显示两者成功地复合在一起。电化学测试结果表明复合材料比单独的PB具有更好的电化学活性。由修饰玻碳电极(GCE)构建的传感器对过氧化氢(H2O2)的还原具有良好的稳定性、重现性和选择性。  相似文献   

8.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

9.
利用电化学方法在多壁碳纳米管修饰的玻碳电极表面聚合一层普鲁士蓝,制备普鲁士蓝/多壁碳纳米管修饰玻碳电极,运用循环伏安法研究了维生素C(vc)在该修饰电极上的电化学行为.该修饰电极对Vc显示出快速的电化学响应和较好的电催化活性,在pH为4.0的磷酸盐溶液中,Ve浓度与其氧化峰电流在8.0×10-4~1.0×10-2 mol/L范围内呈现良好的线性关系,相关系数为0.9993,检测限为6.4×10-5mol/L.该电极具有较好的稳定性和重现性.  相似文献   

10.
We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL?1), with a detection limit of 60 pg·mL?1 (S/N?=?3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility.
Figure
We described a sensitive electrochemical immunosensor for the detection of the carcinoembryonic antigen. It was based on the use of a glassy carbon electrode modified with a multi-layer films made from Prussian blue, graphene, and carbon nanotubes by electrodeposition and assembling techniques. The immunosensor exhibited good precision and acceptable stability and has been applied to analyze clinical sample with a satisfactory result.  相似文献   

11.
This work presents a sensitive voltammetric method for determination of folic acid by adsorbing methylene blue onto electrodeposited reduced graphene oxide film modified glassy carbon electrode (MB/ERGO/GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology of the MB/ERGO/GCE modified electrode was characterized using scanning electron microscopy, displays that both MB and ERGO distributed homogeneously on the surface of GCE. The MB/ERGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE, MB/GCE, and ERGO/GCE. The electrochemical behaviors of folic acid at MB/ERGO/GCE were investigated by cyclic voltammetry, suggesting that the modified electrode exhibited excellent electrocatalytic activity towards folic acid compared with other electrodes. Under physiological condition, the MB/ERGO/GCE modified electrode showed a linear voltammetric response from 4.0 μM to 167 μM for folic acid, and with the detection limit of 0.5 μM (S/N=3). The stability, reproducibility and anti‐interference ability of the modified electrode were examined. The developed method has been successfully applied to determination of FA in tablets with a satisfactory recovery from 96 % to 100 %. The work demonstrated that the electroactive MB adsorbing onto graphene modified electrode showed an enhanced electron transfer property and a high resolution capacity to FA.  相似文献   

12.
We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol–gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol–gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.  相似文献   

13.
In this work, the modified Prussian blue (PB) film showed more stable performance in alkaline solution by one‐step electrodepositon of PB with tris(hydroxymethyl) aminomethane (Tris) on screen‐printed electrode (SPE). The morphology and structure of the modified Tris‐PB/SPE was characterized by scanning electronic microscopy, infra spectroscopy, Raman spectroscopy and X‐ray diffraction. It was inferred that the Tris particles embedded in the PB deposit layer resulted in the change of PB structure and improve its stability in alkaline solution. And then, the modified Tris‐PB/SPE was applied in the detection of Glycosylated hemoglobin (HbA1c). The optimum experimental conditions are pH 7.5, 100 mV/s, 4 μL FAOD and 5 min reaction time. The linearship of HbA1c is i=22.90 C+101.9 in the range of 0.1–2 mmol/L. Comparing with PB/SPE, Tris‐PB/SPE shows better sensitivity and recovery.  相似文献   

14.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

15.
The cellulose acetate covered Prussian blue modified glassy carbon electrode (GCE/PB/CA) was fabricated as a novel hydrogen peroxide sensor. It was shown by scanning electron microscope (SEM) and atomic force microscope (AFM) that Prussian blue was covered and protected by cellulose acetate perfectly. The modified electrode showed a good electrocatalytic activity for H2O2 reduction in neutral aqueous solution. H2O2 was detected amperometrically in 0.05 mol/L phosphate buffer solutions (pH 7.0, containing 0.1 mol/L KCl as supporting electrolyte) at an applied potential of ?0.2 V (vs. SCE). The response current was proportional to the concentration of H2O2 in the range of 1.0×10?5 mol/L to 2.5×10?4 mol/L with the detection limit of 2.2×10?6 mol/L at a signal to noise ratio 3.  相似文献   

16.
The effect of various deposition techniques, electrode materials and posttreatment with tetrabutylammonium and tetrabutylphosphonium salts on the electrochemical behavior and stability of various Prussian blue (PB) modified electrodes, namely PB modified glassy carbon electrodes, silicate‐film supported PB modified glassy carbon electrodes, PB‐doped silicate glassy carbon electrodes, PB modified carbon ceramic electrodes using electrochemical deposition and PB modified carbon ceramic electrodes using chemical deposition is reported. Cyclic voltammetry and amperometric measurements of hydrogen peroxide were performed in a flow injection system while the carrier phosphate buffer (pH 7.0) with a flow rate of 0.8 mL min?1 was propelled into the electrochemical flow through cell housing the PB modified working electrode as well as an Ag|AgCl|0.1 M KCl reference and a Pt auxiliary electrode. The results showed that the deposition procedure, electrode material and posttreatment with additional chemicals can significantly alter the stability and electrochemical behavior of the PB film. Among the studied PB modified electrodes, those based on carbon ceramic electrodes modified with a film of electropolymerized PB showed the best electrochemical stability.  相似文献   

17.
Acetylcholinesterase (ChE) sensor based on Prussian blue (PB) modified electrode was developed and tested for the detection of organophosphorus and carbamic pesticides. The signal of the sensor was generated in PB mediated oxidation of thiocholine recorded at+200 mv in DC mode. ChE from electric eel was immobilized by cross-linking with glutaraldehyde in the presence of bovine serum albumin (BSA) on the surface of screen-printed carbon electrode covered with PB and Nafion. The content of the surface layer (specific enzyme activity, Nafion and BSA amounts) was optimized to establish high and reliable response toward the substrate and ChE inhibitors. The ChE/PB sensor makes it possible to detect Aldicarb, Paraoxon and Parathion-Methyl with limits of detection 30, 10 and 5 ppb, respectively (incubation 10 min). The feasibility of practical application of the ChE/PB sensor developed for the monitoring of degradation of the pesticides in wine fermentation was shown. To diminish matrix interferences, the electrolysis of the grape juice with Al anode and evaporation of ethanol were suggested, however the procedures decrease the sensitivity of pesticide detection and stability of the sample tested.  相似文献   

18.
This work describes the synthesis of an organo-inorganic hybrid material and its application as low-cost electrode material for the electrochemical detection of trace levels of lead in contaminated water. The organo-inorganic hybrid material was obtained by the grafting of 1-(2-hydroxyethylpiperazine) (HEP) in the interlayer space of a natural kaolinite (K). The obtained organokaolinite (K-HEP) was characterized by XRD, FTIR and TGA-DTG techniques. XRD results in particular showed that the structure of the pristine kaolinite was not affected during the synthesis of K-HEP. It was also noticed from 13C NMR data that the structure of HEP was preserved during the synthesis process. Taking into account the affinity of the amine group on HEP molecule for lead ions, K-HEP was used to modify the surface of glassy carbon electrode (GCE) (GCE/K-HEP) in order to build a sensor for lead detection. The peak current of Pb(II) recorded on GCE/K-HEP was more intense compared to the signal recorded on bare GCE, and on natural kaolinite film modified GCE. Several parameters that can affect the stripping response were systematically investigated to optimize the sensitivity of the organokaolinite film modified electrode. Under optimized conditions, a calibration curve was obtained in the concentration range from 8.29 to 116.03 ppb; with a detection limit of 0.25 ppb (S/N=3). After the study of some interfering species on the electrochemical response of Pb(II), the developed sensor was successfully applied to the quantification of the same pollutant in tap water and spring water samples.  相似文献   

19.
普鲁士蓝膜电化学行为的EQCM研究   总被引:1,自引:0,他引:1  
廖慧  吴霞琴  章宗穰 《电化学》2004,10(3):293-297
应用循环伏安法于铂电极上电化学沉积PB膜,并由电化学石英晶体微天平技术(EQCM)原位测量了PB膜电沉积过程的频率响应.研究表明,沉积液中添加邻菲咯啉对PB膜结构有影响.有邻菲咯啉参与沉积的PB Pt/QCM电极对H2O2的电催化还原性能优于不含邻菲咯啉沉积液制备的PB Pt/QCM电极.  相似文献   

20.
Jena BK  Raj CR 《Talanta》2008,76(1):161-165
Gold nanoparticle based nanostructured electrode has been developed for the amperometric detection of ultratrace amount of toxic Cr(VI). The nano-sized Au particles have been grown on a conducting substrate modified with sol-gel-derived thiol functionalized silicate network and used for the electroanalysis of Cr(VI). The nanostructured interface show well-defined voltammetric peak for the reduction of Cr(VI) at approximately 0.4 V. The voltammetric behavior of Cr(VI) strongly depends on the coverage of nanoparticle on the electrode surface. Constant potential amperometry has been used for the detection of Cr(VI) at well below the guideline value set by World Health Organization (WHO). This electrode is highly sensitive (30+/-0.2 nA/ppb) and the detection limit (S/N=9) was 0.1 ppb. Cr(III) and coexisting other metal ions and surface active agent present in water do not interfere with the amperometric measurement of Cr(VI). This nanostructured electrode is highly stable and it can be used for continuous measurement of Cr(VI) without using any pretreatment or activation procedures. The accuracy of the measurement has been validated by measuring the concentration of Cr(VI) in the certified reference material (CRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号