首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

2.
The simple PVC‐based membrane containing N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane (tpmc) as an ionophore and dibutyl phthalate as a plasticizer, directly coated on a glassy carbon electrode was examined as a new sensor for Cu2+ ions. The potential response was linear within the concentration range of 1.0×10?1–1.0×10?6 M with a Nernstian slope of 28.8 mV/decade and detection limit of 7.0×10?7 M. The electrode was used in aqueous solutions over a wide pH range (1.3–6). The sensor exhibited excellent selectivity for Cu2+ ion over a number of cations and was successfully used in its determination in real samples.  相似文献   

3.
A novel multiwalled nanotubes (MWNTs)/Cerium(III) 12 ‐ tungstophosphoric acid (CePW) nanocomposite film glassy carbon electrode was prepared in this paper. Electrochemical behaviors of the CePW/MWNTs modified electrode were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This modified electrode brought new capabilities for electrochemical devices by combining the advantages of carbon nanotubes, rare‐earth, and heteropoly‐acids. The results demonstrated that the CePW/MWNTs modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine in 0.1 M PBS (pH 7.0). The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. The detection limit (S/N=3) for guanine and adenine was 2.0×10?8 M and 3.0×10?8 M, respectively. Further, the acid‐denatured calf thymus DNA was also detected and the result was satisfied.  相似文献   

4.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

5.
In this study, a Tosflex (a perfluoro‐anion‐exchange membrane) modified glassy carbon electrode has been used to detect 2‐naphthalenol (2‐naphthol) in aqueous solutions in order to demonstrate the electroanalytical application of Tosflex. 2‐naphthol polymerizes upon electrochemical oxidation at a glassy carbon electrode; however, the current related to this oxidation is too small for analytical purpose at low concentration level. A Tosflex polymer modified glassy carbon electrode (TFGCE) was found of having capability to improve the detection limit because 2‐naphthol molecules deprotonated in basic solutions to form 2‐naphtholate anions that were accumulated to TFGCE by the anion‐exchange characteristic of Tosflex. The accumulated 2‐naphtholate anions were determined with the following differential pulse voltammetry. With 3 minutes accumulation at +0.05 V, the dependence of oxidation current versus concentration was linear from 8×10?7 M to 1×10?5 M with a regression coefficient of 0.999 and a detection limit of 2×10?7 M. Unlike many other anion‐exchange polymer modified electrodes, the TFGCE is stable at highly basic condition.  相似文献   

6.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a 4‐(2‐Pyridylazo)‐Resorcinol (PAR) polymer film modified glassy carbon electrode (GCE). The PAR polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of DA in a phosphate buffer solution (PBS) (pH 4.0). The linear range of 5.0×10?6–3.0×10?5 M and detection limit of 2.0×10?7 M were observed. Simultaneous detection of AA, DA and UA has also been demonstrated on the modified electrode. This work provides a simple and easy approach to selective detection of DA in the presence of AA and UA.  相似文献   

7.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

8.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   

9.
A glassy carbon electrode (GCE) modified with Mg‐Al‐SDS hydrotalcite‐like clay (SDS‐HTLC) was used for the sensitive voltammetric determination of 2‐nitrophenol (2‐NP) utilizing the oxidation process. The results indicate the prepared modified electrode has an excellent electrocatalytic activity toward 2‐NP oxidation, lowering the oxidation overpotential and increasing the oxidation current. Under optimal conditions, the oxidation current was proportional to 2‐NP concentration in the range from 1.0×10?6 to 6.0×10?4 M with the detection limit of 5.0×10?7 M by DPV (S/N=3). The fabricated electrode was applied for 2‐NP determination in water samples and the recovery for these samples was from 95.6 to 103.5%.  相似文献   

10.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

11.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

12.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

13.
An electrochemical method for the determination of tripelennamine hydrochloride (TPA) using cetyltrimethylammoniumbromide‐multiwalled carbon nanotubes modified glassy carbon electrode (MWCNT‐CTAB/GCE) was developed. Because of good electrical conductivity of MWCNT and catalytic behavior of CTAB, new electrode significantly enhances the sensitivity for the detection of TPA. Parameters such as amount of modifier suspension, scan rate, pH of measure solution, heterogeneous rate constant were investigated. The electrode exhibits a linear potential response in the range of 1.0×10?8 M to 3.0×10?6 M with a detection limit of 2.38× 10?9 M. The modified electrode was successfully applied to the determination of TPA in pharmaceutical and real samples.  相似文献   

14.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

15.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

16.
A novel and reliable direct electrochemical method has been established to monitor DNA damage in acid hydrolyzed calf thymus DNA, based on the determination of 2,8‐dihydroxyadenine (2,8‐DHA). A single‐wall carbon nanotubes (SWCNT) modified edge plane pyrolytic graphite electrode (EPPGE) has been used as a sensor to monitor the DNA damage. 2,8‐DHA the main in vivo adenine oxidation product undergoes oxidation at ~395 mV at SWCNT modified EPPGE using square wave voltammetry (SWV). The sensor exhibits potent and persistent electron‐mediating behavior. A well‐defined oxidation peak for the oxidation of 2,8‐DHA was observed at modified electrode with lowering of peak potential and increase in peak current as compared to bare EPPGE. At optimal experimental conditions, the catalytic oxidative peak current was responsive with the 2,8‐DHA concentrations ranging from 0.05 nM to 100 nM. The detection limit was 3.8×10?11 M and limit of quantification was 1.27×10?10 M. The modified electrode exhibited high stability and reproducibility.  相似文献   

17.
A carbon paste electrode was modified with ZnO nanorods and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,4′AAZCPE) to cause electrocatalysis of norepinephrine oxidation. It has been found that the oxidation of norepinephrine at the surface of modified electrode occurs at a potential of about 180 mV less positive than that of an unmodified carbon paste electrode. Square wave voltammetry (SWV) exhibits linear dynamic range from 1.0×10?7 to 8.0×10?5 M and a detection limit of 3.9×10?8 M for norepinephrine. In addition, this modified electrode was used for simultaneous determination of norepinephrine, tyrosine and nicotine.  相似文献   

18.
A composite multiwalled carbon nanotube polyvinyl chloride electrode based on 7,16‐dibenzyl‐1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane (DBDA18C6) as Sm3+ ionophore is reported. This potentiometric sensor showed a wide linear working range, 1×10?2–1×10?8 M, Nernstian slope, 20.2±0.48 mV per decade and a limit of detection, 6.3±0.36×10?9 M. It works in the pH range 2.5–8.5 and shows a good selectivity over a number of metal ions. It has been found suitable for the analysis of ores and industrial effluents. The electrode surface is characterized by FRA and AFM.  相似文献   

19.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

20.
In this work, the capability of carbon nanofibers to be used for the design of catalytic electrochemical biosensors is demonstrated. The direct electrochemistry of NADH was studied at a glassy carbon electrode modified using carbon nanofibers. A decrease of the oxidation potential of NADH by more than 300 mV is observed in the case of the assembled carbon nanofiber‐glassy carbon electrode comparing with a bare glassy carbon electrode. The carbon nanofiber‐modified electrode exhibited a wide linear response range of 3×10?5 to 2.1×10?3 mol L?1 with a correlation coefficient of 0.997 for the detection of NADH, a high specific sensitivity of 3637.65 (μA/M cm2), a low detection of limit (LOD=3σ) of 11 μM, and a fast response time (3 s). These results have confirmed the fact that the carbon nanofibers represent a promising material to assemble electrochemical sensors and biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号