首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于慢性粒细胞白血病中BCR/ABL融合基因的碱基序列,设计了一种新型发夹结构锁核酸(locked nucleic acids, LNA)探针,把LNA探针通过Au-s键固定在金电极表面构建了特异的生物传感器.LNA探针与目标链DNA杂交,以自行合成的苯甲酸二聚铜配合物([Cu2(C7H5O2)4(C2H6O)2], 简称[Cu(R)2]2+)为杂交指示剂,应用差示脉冲伏安法进行检测,表现出良好的响应信号.该新型锁核酸传感器能较好的区分完全互补链DNA、单碱基错配链DNA.对互补链DNA检测的线性范围为1.0×10-8~1.0×10-6 mol•L-1,检出限为2.0×10-9 mol•L-1.  相似文献   

2.
This communication reports on a novel biosensor to study the hybridization specificity by using thiolated hairpin locked nucleic acids (LNA) as the capture probe. The LNA probe was immobilized on the gold electrode through sulfur–Au interaction and could selectively hybridize with its target DNA. Differential pulse voltammetry (DPV) was used to monitor the hybridization reaction on the probe electrode. The decrease of the peak current of methylene blue, an electroactive indicator, was observed upon hybridization of the probe with the target DNA. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This LNA probe has been used for assay of fusion gene in Chronic Myelogenous Leukemia (CML) of the real sample with satisfactory result.  相似文献   

3.
4.
A novel electrochemical biosensor is described for detection of breakpoint cluster region gene and a cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia (CML) by using thiolated-hairpin locked nucleic acids (LNA) as the capture probe. The hairpin LNA probe was immobilized on the nanogold (NG)/poly-eriochrome black T (EBT) film-modified glassy carbon electrode (GCE). The immobilized LNA probe could selectively hybridize with its target DNA on LNA/NG/EBT/GCE surface. The immobilization and hybridization of the LNA probe were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The hybridization of the immobilized LNA probe with the target DNA was detected by differential pulse voltammetry with the electroactive methylene blue as an indicator. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This novel electrochemical biosensor has been used for assay of PCR real sample with satisfactory result.  相似文献   

5.
《Electroanalysis》2017,29(4):1166-1171
We present an electrochemical biosensor for the analysis of nucleic acids upon hybridization on the β‐cyclodextrin (β‐CD)‐modified gold electrode. The strategy is based on the following: The 5’‐ferrocene‐labeled single stranded capture probe DNA (5’‐fc‐ss‐DNA) was incorporated into the cavity of thiolated β‐CD which was immobilized on the surface of gold electrode. After hybridization of complementary target DNA, hybridized double stranded DNA (ds‐DNA) was released from the cavity of β‐CD. The difference of electrochemical properties on the modified gold electrode was characterized by cyclic voltametry and surface plasmon resonance. We successfully applied this method to the investigation of the sensor responses due to hybridization on various concentrations of applied target DNA. As a result, the label‐free electrochemical DNA sensor can detect the target DNA with a detection limit of 1.08 nM. Finally, our method does not require either hybridization indicators or other signalling molecules such as DNA intercalaters which most of electrochemical hybridization detection systems require.  相似文献   

6.
In this article, we report on efforts to construct a high sensitive electrochemical sensor with immobilized sandwich‐type DNA borne ferrocene (Fc) head for sequence‐specific DNA detection using ultramicroelectrode and low current voltammetry. Based on the difference in deformability between the bending rigid complementary DNA double helix and its anomalous flexile mismatches, the fully complementary target can be distinguished from mismatched targets including the single‐base mismatched target. Detection limit estimated as the amount of DNA is observed to be 100 fM via low current voltammetry. The method offers great promise of high sensitivity and selectivity simultaneously for effective gene identification.  相似文献   

7.
A sensitive electrochemical biosensor was developed for activity detection of histone deacetylase sirtuin2 (SIRT2) using an acetylated peptide substrate. This substrate could be recognized by anti‐acetylated peptide antibody, which could be detected using secondary antibody conjugated alkaline phosphatase which provided an amplified electrochemical signal. In the presence of SIRT2, the substrate was deacetylated, resulting in a decreased electrochemical signal that was correlated to the concentration of SIRT2. Under optimized conditions, the biosensor exhibited a wide linear range from 1 nM to 500 nM with a detection limit of 0.1 nM. The proposed biosensor was also used for detection of SIRT2 inhibitor.  相似文献   

8.
An electrochemical biosensor was developed using Pt‐nanoparticles (Pt‐NPs) dispersed graphene based on a boron‐doped diamond thin film electrode. To compare its performances with those of other biosensors, glucose was used as a target analyte. This biosensor exhibited a wide linear range, a low detection limit and a higher sensitivity compared to other amperometric biosensors using graphene‐based electrodes. In addition, the biosensor promotes a direct electron transfer between the redox enzymes and the electrode surface and detects low concentration analytes. The excellent performance of the biosensor is attributed to the synergistic effect of the Pt‐NPs, graphene sheet and the BDD thin film. Therefore, it can be a promising application for electrochemical detection of analytes.  相似文献   

9.
In spite of the extensive attention paid on the development of various DNA detection strategies, very few studies have been reported regarding direct detection of DNA sequence and mutation in dsDNA. Here, we describe the feasibility of detection and discrimination of target DNA sequences and single base mutations (SBM) directly in double‐stranded oligonucleotides and PCR products without the need for denaturation of the target dsDNA samples. This goal was achieved by employing a peptide nucleic acid (PNA) chain, self‐assembled on the gold electrode as a probe, which binds to dsDNA and forms PNA‐dsDNA hybrid.  相似文献   

10.
A DNA biosensor for the detection of specific oligonucleotide sequences of Avian Influenza Virus type H5N1 has been proposed. The NH2‐ssDNA probe was deposited onto a gold electrode surface to form an amide bond between the carboxyl group of thioacid and the amino group from ssDNA probe. The signals generated as a result of hybridization were registered in square wave voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3?/4? as a redox marker. The genosensor is capable to determine 20‐mer and 180‐bp (PCR products) oligonucleotides complementary sequences with detection limit in the fM range. The genosensor displays good selectivity and sensitivity. The 20‐mer as well as 180‐bp oligonucleotides without a complementary sequence generate very low signal.  相似文献   

11.
The analysis of circulating tumour nucleic acids (ctNAs) provides a minimally invasive way to assess the mutational spectrum of a tumour. However, effective and practical methods for analyzing this emerging class of markers are lacking. Analysis of ctNAs using a sensor‐based approach has notable challenges, as it is vital to differentiate nucleic acids from normal cells from mutation‐bearing sequences emerging from tumours. Moreover, many genes related to cancer have dozens of different mutations. Herein, we report an electrochemical approach that directly detects genes with mutations in patient serum by using combinatorial probes (CPs). The CPs enable detection of all of the mutant alleles derived from the same part of the gene. As a proof of concept, we analyze mutations of the EGFR gene, which has more than 40 clinically relevant alterations that include deletions, insertions, and point mutations. Our CP‐based approach accurately detects mutant sequences directly in patient serum.  相似文献   

12.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

13.
《Electroanalysis》2004,16(22):1912-1918
In this study, a field effect transistor (FET)‐type biosensor based on 0.5 μm standard complementary metal oxide semiconductor (CMOS) technology is proposed and its feasibility for detecting deoxyribonucleic acid (DNA) and protein molecules is investigated. Au, which has a chemical affinity with thiol by forming a self‐assembled monolayer (SAM), was used as the gate metal in order to immobilize DNA and protein molecules. A Pt pseudo‐reference electrode was employed for the detection of biomolecules. The sensor was fabricated as a p‐channel (P)MOSFET‐type because PMOSFET with positive surface potential is useful for detecting negatively charged biomolecules from the view point of its high sensitivity and fast response time. DNA and protein molecules were detected by measuring the variation of the drain current due to the variation of biomolecular charge and capacitance. DNA and protein molecules used in the experiment were 15mer–oligonucleotide probe and streptavidin‐biotin protein complexes, respectively. DNA was detected by both in situ and ex situ measurements. Additionally, to verify the interactions among SAM, streptavidin, and biotin, surface plasmon resonance (SPR) measurement was performed.  相似文献   

14.
This paper demonstrates the development of an analytical method for detecting steroid hormones by coupling HPLC to electrochemical detection, using a nickel‐modified glassy carbon electrode. The method was evaluated in terms of sensitivity, linear dynamic range, limit of detection, and response stability. The developed method exhibited good figures of merit for the steroid hormones studied with no evidence of electrode fouling. As an example, the limit of detection (S/N=3) for E3 was 0.10 µM and the response precision (n=5) was 0.6 %. The application of the method for the analysis of a real river water sample is demonstrated.  相似文献   

15.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

16.
We fabricated a highly sensitive electrochemical sensor for the determination of bisphenol A (BPA) in aqueous solution by using reduced graphene oxide (RGO), carbon nanotubes (CNT), and gold nanoparticles (AuNPs)‐modified screen‐printed electrode (SPE). GO/CNT nanocomposite was directly reduced to RGO/CNT on SPE at room temperature. AuNPs were then electrochemically deposited in situ on RGO/CNT‐modified SPE. Under optimized conditions, differential pulse voltammetry (DPV) produced linear current responses for BPA concentrations of 1.45 to 20 and 20 to 1,490 nM, with a calculated detection limit of an ultralow 800 pM. The sensor response was unaffected by the presence of interferents such as phenol, p‐nitrophenol, pyrocatechol, 2,4‐dinitrophenol, and hydroquinone.  相似文献   

17.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

18.
《Electroanalysis》2006,18(2):141-151
Molecular diagnostics of inherited neurodegenerative disorders such as fragile X syndrome, myotonic dystrophy or Friedreich ataxia (FRDA) is based on analysis of the length of trinucleotide repetitive sequences in certain loci of genomic DNA. The current methods employ PCR and electrophoretic determination of the amplified DNA fragment size. We have recently shown that length of a triplet repetitive DNA sequence can be determined using a double‐surface electrochemical technique involving multiple hybridization of the expanded triplet repeat with short labeled reporter probe (spanning several trinucleotides). Here we propose a single‐surface sensor employing an analogous principle. Target DNA (tDNA) is adsorbed onto surface of a carbon (pyrolytic graphite or screen‐printed) electrode. Biotin‐labeled reporter probe (RP) is hybridized with the immobilized tDNA followed by binding of streptavidin‐alkaline phosphatase (ALP) conjugate. The ALP catalyzes production of an electroactive indicator (1‐naphthol) which is detected voltammetrically on the same electrode. Signal resulting from this electrochemical enzyme‐linked DNA hybridization assay is normalized to the amount of tDNA immobilized at the transducer surface either by measuring intrinsic tDNA voltammetric response, or using electrochemical labeling of the tDNA with osmium tetroxide 2,2′‐bipyridine complex. Detection of (GAA)n?(TTC)n triplet repeat expansion in nanogram quantities of PCR‐amplified tDNAs, including amplicons of patients' genomic DNA, is demonstrated. We show that our technique allow differentiation between normal and pathological alleles of X25 gene related to the FRDA.  相似文献   

19.
20.
The working principle of a genosensor is based on the mechanism of ion‐channel mimetic sensors. The analytical signals generated upon hybridization processes were recorded by a redox active marker [Fe(CN)6]3?/4? present in the sample solution using voltammetric techniques. The developed genosensor was suitable for determination of 20‐mer complementary oligonucleotide sequence, and also of the PCR products containing the complementary 20‐mer sequence in various positions, with detection limits in the 10 pM range. The noncomplementary 20‐mer oligonucleotide sequence as well as the PCR product without complementary region generated very weak response. The good discrimination of the position of the complementary part in the PCR products was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号