首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(21):1970-1976
The oxidative electropolymerization of the (3‐pyrrol‐1‐ylpropyl)malonic acid monomer 1 is a simple and reproducible one‐step procedure for the synthesis of complexing polymer film modified electrodes, which have been applied to the electroanalysis of Cu(II), Pb(II), Cd(II) and Hg(II) ions by preconcentration upon complexation, followed by anodic stripping analysis. The detection limits were determined from square‐wave voltammetry at 0.5 nM, 5 nM, 50 nM and 0.2 μM for Pb(II), Cu(II), Hg(II) and Cd(II), respectively, after 10 min preconcentration. The modified electrodes showed a better selectivity toward copper(II) ions. Analysis of copper in a tap water sample agreed well with ICPMS analysis results.  相似文献   

2.
《Electroanalysis》2003,15(1):65-69
By virtue of strong ion‐paring interactions that are reinforced following oxidation of ferrocene moieties to ferrocenium form, films synthesized by oxidative polymerization of pyrrole‐containing (ferrocenylmethyl)trialkylammonium cations are able to electrochemically sense the dihydrogenphosphate anion in organic electrolytes. Strong and selective affinity of these cationic polymer films towards H2PO4? was evidenced from FT‐IR and EQCM experiments. Clear two‐wave differential pulse voltammetry features allow the amperometric titration of this anion.  相似文献   

3.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

4.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

5.
A method using commercially available sputtered bismuth screen‐printed electrodes (BispSPE), as substitute to mercury electrodes, for the determination of trace Pb(II) and Cd(II) ions in drinking well water samples collected in a contaminated area in The Republic of El Salvador by means of differential pulse anodic stripping voltammetry (DPASV) has been proposed. The comparable detection and quantification limits obtained for both BispSPE and hanging mercury drop electrode (HMDE), together with the similar results with a high reproducibility obtained in these water samples analyses recommend the applicability of BispSPE for the determination of low level of metal concentrations in natural samples.  相似文献   

6.
A simple but highly snesitive electrochemical sensor for the determination of dihydromyricetin (DMY) based on graphene‐Nafion nanocomposite film modified Glassy carbon electrode (GCE) was reported. The characteristic of the sensor was examined by scanning electron microscopic (SEM) and electrochemical impedance spectroscopy (EIS). Compares with bare GCE, pre‐anodized glassy carbon electrode (GCE(ox)) and Nafion modified electrode, the sensor exhibited the more superior ability of detecting DMY, due to the synergetic graphene and Nafion. Other, the dependence of the current on pH, instrumental parameters, accumulation time and potential were investigated to optimize the experimental conditions in the determination of DMY. Under the selected conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 8.0 × 10?8 ~ 2.0 × 10?5 mol L?1 with a detection limit of 2.0 × 10?8 mol L?1. And, the method was also applied successfully to detect DMY in Ampelopsis grossedentata samples.  相似文献   

7.
Highly sensitive voltammetric method for hesperidin determination is developed using glassy carbon electrode modified with SnO2 nanoparticles (SnO2 NPs) and surfactants. The highest oxidation currents of hesperidin are observed in the case of cationic 0.50 mM cetylpyridinium bromide (CPB). Parameters of hesperidin electrooxidation have been calculated. Adsorptive anodic differential pulse voltammetry (AdADPV) in phosphate buffer pH 7.0 after 120 s accumulation provides linear dynamic ranges of 0.10–10 and 10–75 μM with the detection limit of 0.077 μM. The selectivity of hesperidin response is proved in the presence of inorganic ions, saccharides, ascorbic acid and other natural phenolics.  相似文献   

8.
An ultrastable chemical modified electrode (CME) was fabricated conveniently based on gold film by pulse plating of chloroauric acid on Pt disk electrode. As a novel modifying method of making CME, the CME was characterized by electrochemical impedance spectroscopy (EIS) and used as a voltammetric sensor for Ketamine. This thin gold film modified electrode exhibited excellent electrocatalysis to Ketamine oxidation. Based on this CME, detection of Ketamine by voltammetry was first erected with a fast‐response and wide responding linear range. Further experiments demonstrated that this CME has good stability, repeatability and reproducibility. The established method is accurate, reliable, and can be used for the quality control of Ketamine hydrochloride injection.  相似文献   

9.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

10.
Glassy carbon electrodes modified with conducting polymers of Ni(II), Zn(II) and metal free tetraruthenated porphyrin were evaluated for reduction and oxidation processes of S(IV) oxoanions in Na2SO3/water‐ethanol at pH 1.0 and 3.5, showing electrocatalytic activity. A Ni(II) film was able to reduce the S(IV) oxoanions selectively in presence of high concentration of gallic acid. The Ni(II) film was also used as an amperometric sensor toward S(IV) oxoanions reduction in white wine samples showing a detection and quantification limit of 1.40 mg L?1 and 4.68 mg L?1, respectively. These results are promising for the electrochemical determination of S(IV) using conducting polymers from these macrocycles.  相似文献   

11.
This article compares the use of batch‐injection analysis (BIA) with a conventional batch system for the anodic stripping voltammetric (ASV) determination of Pb, Cu and Hg in biodiesel using screen‐printed gold electrode (SPGE). The optimized BIA conditions were 200 µL of injection volume of the digested samples at 5 µL s?1 directly on the working electrode of the SPGE immersed in 0.1 mol L?1 HCl solution. Therefore, BIA‐ASV presented the advantages of low sample consumption, which extended the SPGE lifetime to a whole working day of analyses, and potential for on‐site analysis using battery‐powered micropipettes and potentiostats. Although presenting lower sensitivity than conventional systems, the BIA‐ASV presented detection limit values of 1.0, 0.5 and 0.7 µg L?1, respectively for Pb, Cu and Hg, a linear range between 20 and 280 µg L?1, and adequate recovery values (90–110 %) for spiked biodiesel samples.  相似文献   

12.
《Electroanalysis》2003,15(2):108-114
An imprinted polymer modified hanging mercury drop electrode (HMDE) in Model 303A system in conjunction with a PAR Model 264A Polarographic Analyzer/Stripping Voltammeter has been used for the selective analysis of a diquat herbicide viz., 5,6‐dihydropyrazino[1,2,3,4‐[lmn]‐1,10‐phenanthrolinium dichlorides in differential pulse cathodic stripping voltammetry mode. Complex aqueous samples (drinking water and agricultural soil suspension), spiked with a diquat herbicide, were directly analyzed by the adsorptive accumulation of the analyte over the working electrode (accumulation potential ?0.8 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, supporting electrolyte 0.1 M KCl, scan rate 10 mV s?1, pulse amplitude 25 mV). The limit of detection for diquat herbicide was found to be 0.34 nmol L?1 (0.1 ppb, RSD 2%, S/N=2).  相似文献   

13.
Novel voltammetric approach for the selective determination of total capsaicinoids has been developed using glassy carbon electrode modified with multi‐walled carbon nanotubes and poly(gallic acid) (PGA/MWNT/GCE). The modified electrode provides significant improvements in the capsaicinoids voltammetric characteristics in comparison to GCE and MWNT/GCE. The electrooxidation of capsaicinoids is irreversible adsorption‐controlled process with the anodic transfer coefficient of 0.49–0.53 and heterogeneous electron transfer rate constant of 1300–2400 s?1. The analytical ranges of 0.010–1.0 and 1.0–50 μM for capsaicin, 0.025–0.75 and 0.75–75 μM for dihydrocapsaicin and 0.025–5.0 and 5.0–75 μM for nonivamide with the detection limits of 2.9, 5.9 and 6.1 nM, respectively, have been obtained using differential pulse voltammetry (DPV). The selectivity of the capsaicinoids quantification in the presence of ascorbic acid, α‐tocopherol and carotenoids is shown. The method has been tested on the samples of red hot pepper spices and Capsicum annuum L. tinctures. The results correspond to the chromatographic data.  相似文献   

14.
孙登明  马伟  吴云 《应用化学》2006,23(11):1214-0
聚合物修饰电极;l-异白氨酸;多巴胺;循环伏安法  相似文献   

15.
In this study, an impedimetric immunosensor based on polymer poly(thiophene)‐graft‐poly(methacrylamide) polymer (P(Thi‐g‐MAm)) modified indium tin oxide (ITO) electrode is developed for the detection of the Neuron Specific Enolase (NSE) cancer biomarker. First, the P(Thi‐g‐MAm) polymer is synthesized and coated on the ITO electrode by using a spin‐coating technique. P(Thi‐g‐MAm) polymer acts as an immobilization platform for immobilization of NSE‐specific monoclonal antibodies. Anti‐NSE antibodies are utilized as biosensing molecules and they bind to the amino groups of P(Thi‐g‐Mam) polymer via glutaraldehyde cross‐linking. Spin‐coating technique is employed for bioelectrode fabrication and this technique provides a thin and uniform film on the ITO electrode surface. This bioelectrode fabrication technique is simple and it generates a suitable platform for large‐scale loadings of anti‐NSE antibodies. This immunosensor exhibits a wide linear detection range from 0.02 to 4 pg mL?1 and with an ultralow detection limit of 6.1 fg mL?1. It reveals a good long‐term stability (after 8 weeks, 78% of its initial activity), an excellent reproducibility (1.29% of relative standard deviation (RSD)), a good repeatability (5.55% of RSD), and a high selectivity. In addition, the developed immunosensor is proposed as a robust diagnostic tool for the clinical detection of NSE and other cancer biomarkers.  相似文献   

16.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

17.
In this study, a polyviologen modified glassy carbon electrode (PVGCE) was used to detect Hg(II) in aqueous solutions containing significant amounts of chloride anions in order to demonstrate the electroanalytical application of the electropolymerized polyviologen. The polyviologen thin film was formed on the electrode surface by applying a constant potential of ?1.0 V in the pH 4.2 Britton–Robinson (BR) buffer solution that contains 0.1 wt% of viologen oligomers. The PVGCE was found capability to improve the detection limit of Hg(II) in the solutions with high concentration of chloride because Hg(II) forms negative complex ions HgCl that can be accumulated to PVGCE by the anion‐exchange characteristic of polyviologen. With 5 minutes accumulation at ?0.2 V, the adsorbed HgCl anions were reduced to Hg and deposited on the electrode surface, and were determined with the following anodic stripping differential pulse voltammetry (ASDPV). The dependence of anodic stripping current versus concentration was linear from 1 ppb (5 nM) to 100 ppb (0.5 μM) with a regression coefficient of 0.9959.  相似文献   

18.
A glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNTs) and a hydrophobic ionic liquid (IL), was used for the simultaneous voltammetric determination of theophylline (TP) and guaifenesin (GF). The results showed that the oxidations of TP and GF were facilitated at modified electrode and peak‐to‐peak separation at MWCNT? IL/GCE (252 mV) was larger than that observed at unmodified GCE (165 mV). Voltammetric signals for TP and GF exhibited linear ranges of 0.5 to 98.0 µM (R2>0.99) and 1.5 to 480.0 µM (R2>0.99), respectively. The method was used to estimate TP and GF contents in some real samples.  相似文献   

19.
《Electroanalysis》2005,17(21):1952-1958
The performance of a poly(1,8‐diaminonaphthalene)‐modified electrode for the determination of the Se(IV) ion in an aqueous medium was investigated with anodic stripping voltammetry without the pretreating of the sample. The experimental parameters for the analysis of Se(IV) were optimized and the characteristics of this polymer‐modified electrode were investigated by using cyclic voltammetry. The Se(IV) ions were chemically deposited onto the surface of the pDAN‐Au electrode in an acidic medium. The detection limit employing the anodic stripping differential pulse voltammetry was 9.0×10?9 M for Se(IV) with 4.4 % of RSD. Satisfactory result for the determination of Se(IV) was acquired employing a certified standard urine reference material, SRM's 2670 (trace element in urine) with 4.1 ppb of SD.  相似文献   

20.
采用电聚合方法制备了聚L-络氨酸修饰电极。利用循环伏安法(CV)探究了pH值、扫描速率对槲皮素电化学行为的影响。用差分脉冲伏安法(DPV)对槲皮素进行测定。结果表明:聚L-络氨酸修饰电极在pH值为6.0的磷酸盐缓冲溶液中对槲皮素表现出良好的电催化能力。在6.21×10~(-5)~6.9×10~(-4) mol/L范围内槲皮素的浓度与相应的检测信号呈现出良好的线性关系,线性方程为:I(10~(-6) A)=-1.034 8-0.099 39c(10~(-4) mol/L),线性相关系数R=-0.987 87,检出限为2.07×10~(-5) mol/L(S/N=3)。电化学分析方法简易快捷、重现性和稳定性高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号