首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5′-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.
Figure
Enzyme-linked electrochemical detection of a ligated DNA strand using magnetic beads. Anti-digoxigenin antibody conjugate with alkaline phosphatase (ALP) is bound to digoxigenin label of the ligated product immobilized at streptavidin-coated magnetic beads via biotin tag on its opposite end. Then substrate for ALP (napht-1-yl phosphate) is added and enzymatically converted to napht-1-ol, an electroactive indicator, which is subsequently detected electrochemically at a carbon electrode  相似文献   

2.
In this paper we extend the application area of the label-free structure-sensitive electrochemical DNA sensing with mercury-based electrodes which is for the first time used, in combination with immunoprecipitation at magnetic beads (MB), for the probing of DNA interactions with tumor suppressor protein p53. The technique relies on capture of the p53-DNA complexes at MB via anti-p53 antibodies, followed by salt-induced dissociation of linear DNA from the complex and its voltammetric detection. Competitive binding of p53 to various plasmid DNA substrates, including lin or scDNAs with or without a specific target site, can easily be followed by ex situ electrochemical analysis of DNA recovered from the immunoprecipitated complexes. Compared to gel electrophoresis which is usually applied to analyze different plasmid DNA forms and their complexes with proteins, the electrochemical detection is faster and allows simpler quantitation of DNA containing free ends at submicrogram levels. We demonstrate applicability of the proposed technique to monitor different DNA-binding activities of wild type and mutant p53 proteins.  相似文献   

3.
A separation‐free single‐base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele‐specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5′‐end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite‐converted genomic DNA, and a DNA polymerase. A single base‐extended primer (i.e., SBE product) that was 5′‐Cy3‐ and 3′‐Cy5‐tagged was formed by incorporation of the Cy5‐labeled terminator into the 3′‐end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.  相似文献   

4.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   

5.
High fidelity base pairing is important for the transmission of genetic information. Weak base pairs can lower fidelity, complicating sequencing, amplification and replication of DNA. Thymidine 5′-monophosphate (TMP) is the most weakly pairing nucleotide among the canonical deoxynucleotides, causing high errors rates in enzyme-free primer extension. Here we report the synthesis of an ethynylpyridone C-nucleoside analog of 3′-amino-2′,3′-dideoxythymidine monophosphate and its incorporation in a growing strand by enzyme-free primer extension. The ethynylpyridone C-nucleotide accelerates extension more than five-fold, reduces misincorporation and readily displaces TMP in competition experiments. The results bode well for the use of the C-nucleoside as replacements for thymidine in practical applications.  相似文献   

6.
A new organotin complex derived from propyl gallate and 1,10‐phenanthroline was designed, synthesized and characterized using spectroscopic and elemental analytical methods. The underlying mechanisms of the anticancer action of the tin complex were further elucidated by evaluating its in vitro DNA interaction and the regulating signaling pathways. Our results showed that the tin complex could effectively activate DNA strand breaks in MCF‐7 cells in a dose‐dependent manner after cellular internalization. Phosphorylation of a DNA damage marker, histone H2A.X (Ser139), was thus upregulated in treated cells. Additionally, our results indicate that p53 is phosphorylated in response to DNA damage, and that this phosphorylation may be involved in the subsequent induction and activation of p53. In vitro DNA binding of the complex in Tris–HCl buffer was studied using various biophysical methods, revealing that the tin complex binds to DNA non‐covalently via electrostatic interaction. The higher Kb value of the complex suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of the tin complex with nucleotide (5′‐GMP) were carried out. The complex exhibits DNA cleavage activity with supercoiled pBR322 in the presence of different activators. The complex cleaves DNA efficiently via oxidative cleavage pathway. Molecular docking studies were performed to understand the binding mode of the tin complex with DNA (PDB ID: 1BNA).  相似文献   

7.
In this paper, we present an electrochemical DNA–protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded ONs bearing a dT20 tail labeled with Os,bipy are specifically recognized by the tumor suppressor p53 protein according to the presence or absence of a specific binding site (p53CON) in the double-stranded segment. We demonstrate the applicability of the Os,bipy-labeled probes in titration as well as competition MBIP assays to evaluate p53 relative affinity to various sequence-specific or structurally distinct unlabeled DNA substrates upon modulation of the p53-DNA binding by monoclonal antibodies used for the immunoprecipitation. To detect the p53-bound osmium-labeled probes, we took advantage of a catalytic peak yielded by Os,bipy-modified DNA at the mercury-based electrodes, allowing facile determination of subnanogram quantities of the labeled oligonucleotides. Versatility of the electrochemical MBIP technique and its general applicability in studies of any DNA-binding protein is discussed. Figure
?  相似文献   

8.
The contribution of DNA strand breaks accumulating in the course of nucleotide excision repair to upregulation of the p53 tumor suppressor protein was investigated in human dermal fibroblast strains after treatment with 254 nm ultraviolet (UV) light. For this purpose, fibroblast cultures were exposed to UV and incubated for 3 h in the presence or absence of l-beta-D-arabinofuranosylcytosine (araC) and/or hydroxyurea (HU), and then assayed for DNA strand breakage and p53 protein levels. As expected from previous studies, incubation of normal and ataxia telangiectasia (AT) fibroblasts with araC and HU after UV irradiation resulted in an accumulation of DNA strand breaks. Such araC/HU-accumulated strand breaks (reflecting nonligated repair-incision events) following UV irradiation were not detected in xeroderma pigmentosum (XP) fibroblast strains belonging to complementation groups A and G. Western blot analysis revealed that normal fibroblasts exhibited little upregulation of p53 (approximately 1.2-fold) when incubated without araC after 5 J/m2 irradiation, but showed significant (three-fold) upregulation of p53 when incubated with araC after irradiation. AraC is known to inhibit nucleotide excision repair at both the damage removal and repair resynthesis steps. Therefore, the potentiation of UV-induced upregulation of p53 evoked by araC in normal cells may be a consequence of either persistent bulky DNA lesions or persistent incision-associated DNA strand breaks. To distinguish between these two possibilities, we determined p53 induction in AT fibroblasts (which do not upregulate p53 in response to DNA strand breakage) and in XP fibroblasts (which do not exhibit incision-associated breaks after UV irradiation). The p53 response after treatment with 5 J/m2 UV and incubation with araC was similar in AT, XPA, XPG and normal fibroblasts. In addition, exposure of XPA and XPG fibroblasts to UV (5, 10 or 20 J/m2) followed by incubation without araC resulted in a strong upregulation of p53. We further demonstrated that HU, an inhibitor of replicative DNA synthesis (but not of nucleotide excision repair), had no significant impact on p53 protein levels in UV irradiated and unirradiated human fibroblasts. We conclude that upregulation of p53 at early times after exposure of diploid human fibroblasts to UV light is triggered by persistent bulky DNA lesions, and that incision-associated DNA strand breaks accumulating in the course of nucleotide excision repair and breaks arising as a result of inhibition of DNA replication contribute little (if anything) to upregulation of p53.  相似文献   

9.
Squaramate‐linked 2′‐deoxycytidine 5′‐O‐triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate‐linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys‐containing peptides. Squaramate‐linked DNA formed covalent cross‐links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.  相似文献   

10.
There is an urgent need for development of rapid and inexpensive techniques for detection of microRNAs (miRNAs), which are potential biomarkers of various types of cancer. In this paper, we describe a multiplexed electrochemical platform for determination of three cancer‐relevant miRNAs: miR‐21, let‐7a and miR‐31. The strategy combines the use of magnetic beads (MBs) modified with a commercial antibody for the efficient capture of the heteroduplexes formed by hybridization of the target miRNA with DNA probe. Free non‐hybridized region of the DNA probe was thereafter hybridized with two biotin‐labeled auxiliary DNA probes in a process of hybridization chain reaction (HCR), resulting in a long hybrid bearing a large number of biotin molecules. Labeling of these multiple biotin units with streptavidin‐peroxidase conjugates allowed an amplification of the amperometric signal measured after capturing the modified MBs at a screen‐printed carbon electrode array of eight electrodes. The combined strategy demonstrated in a similar assay time significantly higher sensitivity than those previously described using modified MBs with the same capture antibody (without amplification by HCR) or a HCR strategy implemented on the surface of MBs, respectively. The methodology exhibits a good selectivity for discriminating single mismatches and was applied to the determination of the three target miRNAs in total RNA (RNAt) extracted from various cancer cell lines and from cervical precancerous lesions.  相似文献   

11.
A form of single‐strand DNA‐conformation polymorphism analysis (SSCP) employing nondenaturing slab gel electrophoresis is applicable to the genetic diagnosis of mutations at exons 7, 8 and 9 of the p53 gene. Recently, microchip electrophoresis (ME) systems have been used in SSCP analysis instead of conventional slab gel electrophoresis in terms of speed, sensitivity and automation. The aim of the present study was to investigate the application of SSCP and ME analysis as a rapid and effective method to the detection of mutations for exons 7, 8 and 9 of the p53 gene. It was found that using the electric field strength 260 V/cm and the sieving matrix of 4 mg/mL poly(ethylene oxide) was very useful to achieve better resolution and fast detection of mutations at exons 7, 8 and 9 of p53 gene. Under the optimized conditions, mutations at exons 7–9 of p53 gene were analyzed within 60 s and the relative standard deviation values of the migration times were less than 5.81% (n=5). The detection limit can be as low as 1 ng·L?1.  相似文献   

12.
A single‐nucleotide polymorphism (SNP) detection method was developed by combining single‐base primer extension and salt‐induced aggregation of gold nanoparticles densely functionalized with double‐stranded DNA (dsDNA‐AuNP). The dsDNA‐AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single‐base protrusion at the outermost surface disperse stably, allowing detection of a single‐base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single‐stranded DNA on the AuNP surface, the resulting dsDNA‐AuNP works as a visual indicator of single‐base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single‐base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.  相似文献   

13.
Gold‐surface grafted peptide nucleic acid (PNA) strands, which carry a redox‐active ferrocene tag, present unique tools to electrochemically investigate their mechanical bending elasticity based on the kinetics of electron‐transfer (ET) processes. A comparative study of the mechanical bending properties and the thermodynamic stability of a series of 12‐mer Fc‐PNA?DNA duplexes was carried out. A single basepair mismatch was integrated at all possible strand positions to provide nanoscopic insights into the physicochemical changes provoked by the presence of a single basepair mismatch with regard to its position within the strand. The ET processes at single mismatch Fc‐PNA?DNA modified surfaces were found to proceed with increasing diffusion limitation and decreasing standard ET rate constants k0 when the single basepair mismatch was dislocated along the strand towards its free‐dangling Fc‐modified end. The observed ET characteristics are considered to be due to a punctual increase in the strand elasticity at the mismatch position. The kinetic mismatch discrimination with respect to the fully‐complementary duplex presents a basis for an electrochemical DNA sensing strategy based on the Fc‐PNA?DNA bending dynamics for loosely packed monolayers. In a general sense, the strand elasticity presents a further physicochemical property which is affected by a single basepair mismatch which may possibly be used as a basis for future DNA sensing concepts for the specific detection of single basepair mismatches.  相似文献   

14.
A new electrochemical PNA hybridization biosensor for detection of a 15‐mer sequence unique to p53 using indigo carmine (IC) as an electrochemical detector is described in this work. This genosensor is based on the hybridization of target oligonucleotide with its complementary probe immobilized on the gold electrode by self‐assembled monolayer formation. Because this label is electroactive in acidic medium, the interaction between IC and short sequence of p53 is studied by differential pulse voltammety (DPV) in 0.1 M H2SO4. The results of electrochemical impedance spectroscopy and cyclic voltammetry in the solution of [Fe(CN)6]3?/4? shows no breakage in PNA‐DNA duplex. A decrease in the voltammetric peak currents of IC is observed upon hybridization of the probe with the target DNA. The influence of probe concentration on effective discrimination against non‐complementary oligonucleotides is investigated and a concentration of 10?7 M is selected. The diagnostic performance of the PNA sensor is described and the detection limit is found to be 4.31×10?12 M.  相似文献   

15.
By using the specific primer extension reaction, a new assay for genotyping of single-nucleotide polymorphisms (SNPs) has been demonstrated. The assay relies on the conformational and colorimetric change of water-soluble polythiophene derivative, poly[3-(3′-N,N,N-triethylamino-1′-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT), upon forming interpolyelectrolyte complex with extended double strand DNA and non-extended single strand DNA. All three kinds of SNP genotypes can be colorimetrically identified with one primer extension reaction in homogeneous solution. Moreover, combining with the specific digestion of RNA strands in the RNA/DNA hybrids, the proposed assay can also be applied to SNP genotyping for RNA templates. The SNP genotyping assay does not require chemical modification of oligonucleotide probes and nucleic acid targets and any separation step. It would be useful for routinely SNP detection in ordinary laboratories.  相似文献   

16.
5‐[(2‐Nitrobenzyl)oxymethyl]‐2′‐deoxyuridine 5′‐O‐triphosphate was used for polymerase (primer extension or PCR) synthesis of photocaged DNA that is resistant to the cleavage by restriction endonucleases. Photodeprotection of the caged DNA released 5‐hydroxymethyluracil‐modified nucleic acids, which were fully recognized and cleaved by restriction enzymes.  相似文献   

17.
介绍了一种利用金胶的选择性聚集实现信号扩增的超灵敏的电化学方法, 用于人类p53肿瘤抑制剂基因的检测. 在实验中, 根据p53基因的序列设计了能特异性检测p53肿瘤抑制剂基因的二段探针, 在一段探针上固定磁性颗粒以捕获并富集目标基因, 同时在另一段探针上标记金纳米颗粒作为检测信标. 另外, 通过硫代三聚氰酸和金纳米颗粒的自组装作用, 形成金纳米颗粒和硫代三聚氰酸的网状结构, 获得金纳米颗粒的选择性聚集, 实现信号扩增. 用此法检测目标p53野生型DNA, 最低检测限为2.24×10-17 mol/L, 同时进一步研究了该探针对p53野生型和一碱基错配的突变型的选择性.  相似文献   

18.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

19.
A simple and highly sensitive electrochemical biosensor for microRNA (miRNA) detection was successfully developed by integrating a target‐assisted isothermal exponential amplification reaction (EXPAR) with enzyme‐amplified electrochemical readout. The binding of target miRNA with the immobilized linear DNA template generated a part duplex and triggered primer extension reaction to form a double‐stranded DNA. Then one of the DNA strands was cleaved by nicking endonuclease and extended again. The short fragments with the same sequence as the target miRNA except for the replacement of uridines and ribonucleotides with thymines and deoxyribonucleotides could be displaced and released. Hybridization of these released DNA fragments with other amplification templates and their extension on the templates led to target exponential amplification. Integrating with enzyme‐amplified electrochemical readout, the electrochemical signal decreases with the increasing target microRNA concentration. The method could detect miRNA down to 98.9 fM with a linear range from 100 fM to 10 nM. The fabrication and binding processes were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The specificity of the method allowed single‐nucleotide difference between miRNA family members to be discriminated. The established biosensor displayed excellent analytical performance toward miRNA detection and might present a powerful and convenient tool for biomedical research and clinic diagnostic application.  相似文献   

20.
This paper discusses a new electrochemical DNA hybridization sensing approach based on the detection of a linked enzyme label. In this method we employ enzyme that is attached to a tethered ssDNA oligomer on the surface and the target analyte is a complementary ssDNA oligomer that does not require any pre‐treatment. The advantage of using of enzyme label is in its amplification of the registration of the hybridization event due to the catalytic reaction facilitated in the process. One particular novelty is associated with the use of enzymes that directly communicate with the electrode surface thus allowing for minimizing the need of additional reagents in the assay. The electrochemical assay was demonstrated when using mixed self‐assembled monolayers from thiolated oligonucleotide and 6‐mercapto 1‐hexanol on gold surfaces. Horseradish peroxidase (HRP) is attached to the surface tethered oligonucleotide using streptavidin‐biotin chemistry, and the enzyme successfully established direct electron transfer (DET) with the electrode or mediated electron transfer (MET) using a mediator. Hybridization results in increasing the angle of contact between electrode and DNA and also the stiffness of the ds DNA, which results in displacing the enzyme away from the electrode surface, and thereby reducing the occurrence of direct electron transfer between the enzyme and the electrode. The cyclic voltammetry showed a clear distinction in response between the complete complementary sequence and the two‐base mismatch sequence. Ellipsometric measurements show that the thickness of the thiol modified oligonucleotide on gold surfaces changes before and after hybridization for the complementary sequence, where as a minimal change in thickness was observed for the noncomplementary sequence. The model target analyte in this study was TP53 gene where a specific mutation is a marker for a list of cancers. Mutations of the TP53 gene have been demonstrated in tumors of the colon, breast, lung, ovary, bladder, and many other organs. Analysis of p53 mutations may provide useful information for the diagnosis, prognosis and therapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号