首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism and the origin of selectivity of the asymmetric Strecker reaction catalyzed by a TiIV‐complex catalyst generated from a cinchona alkaloid, achiral substituted 2,2′‐biphenol, and tetraisopropyl titanate have been investigated by DFT and ONIOM methods. The calculations indicate that the reaction proceeds through a dual activation mechanism, in which TiIV acts as Lewis acid to activate the electrophile aldimine substrate, whereas the tertiary amine in cinchona alkaloid works as Lewis base to promote the activation and isomerization of HCN. The C? C bond formation step is predicted to be the selectivity‐controlling step in the reaction with an energy barrier of 9.3 kcal mol?1. The “asymmetric activation” is achieved by the transfer of asymmetry from the chiral cinchonine ligand to the axially flexible achiral biphenol ligand through coordination interaction with the central metal TiIV. The large steric hindrance from the 3,3′‐position substitute of biphenol, combined with the quinoline fragment of cinchona alkaloid and the orientation of hydrogen bonding of iPrOH, play a key role in controlling the stereoselectivity, which is in good agreement with the experimental observations.  相似文献   

2.
Lewis base‐catalyzed cyclization reactions of allenoates with electron‐deficient olefins and imines have been demonstrated by the preparation of biologically active natural products and pharmaceutically interesting substances and have emerged as powerful synthetic tools in the rapid construction of cyclic molecular complexity. In contrast to phosphine‐containing Lewis bases, nitrogen‐containing Lewis base amines display markedly different reaction profiles; however, this area is not well‐developed. Herein we summarize the recent progress in this emerging field and outline the challenges ahead.  相似文献   

3.
4.
5.
Mannich reactions of imine with acetylacetone were effectively catalyzed by the modified chiral cinchona alkaloid‐derived thiourea. The reactions led to chiral β‐amino carbonyl compounds in high yields and good enantioselectivities. The study demonstrated for the first time that Mannich reactions of unmodified acetylacetone with heterocyclic imine derived from benzothiazole can be promoted by chiral bifunctional organocatalyst.  相似文献   

6.
Aryl ketones represent problematic substrates for asymmetric Mannich reactions due to a large steric hindrance exhibited by such compound species. A highly enantioselective direct Mannich reaction of aryl methyl ketones with cyclic imine benzo[e][1,2,3]oxathiazine 2,2‐dioxides could be successfully carried out utilizing a combination of cinchona alkaloid‐derived primary amines with trifluoroacetic acid (TFA); the primary amines feature a superior catalytic efficacy over secondary amines with a variety of sterically hindered carbonyl compounds as substrates. The reaction proceeded well with various cyclic imines in 89–97 % ee and with various aryl methyl ketones in 85–98 % ee. Moreover, the aryl carbonyl of a Mannich product could be transformed to ketoxime, which further undergoes a Beckmann rearrangement to produce an amide compound while maintaining enantioselectivity.  相似文献   

7.
Asymmetric cyanation of trimethylsilyl cyanide (TMSCN) with α,β‐unsaturated amides and ketones, respectively, catalyzed by bifunctional mononuclear 1,1′‐bi‐2‐naphthol (BINOL)–Mg and binuclear bis(prophenol)–Mg catalysts was realized. A series of synthetically important 1,4‐cyano products were obtained with good to high enantioselectivities (up to 97 % ee).  相似文献   

8.
Enantioselective protonation with a catalytic enamine intermediate represents a challenging, yet fundamentally important process for the synthesis of α‐chiral carbonyls. We describe herein chiral primary‐amine‐catalyzed conjugate additions of indoles to both α‐substituted acroleins and vinyl ketones. These reactions feature enamine protonation as the stereogenic step. A simple primary–tertiary vicinal diamine 1 with trifluoromethanesulfonic acid (TfOH) was found to enable both of the reactions of acroleins and vinyl ketones with good activity and high enantioselectivity. Detailed mechanistic studies reveal that these reactions are rate‐limiting in iminium formation and they all involve a uniform H2O/acid‐bridged proton transfer in the stereogenic steps but divergent stereocontrol modes for the protonation stereoselectivity. For the reactions of α‐branched acroleins, facial selections on H2O‐bridged protonation determine the enantioselectivity, which is enhanced by an OH???π interaction with indole as uncovered by DFT calculations. On the other hand, the stereoselectivity of the reactions with vinyl ketones is controlled according to the Curtin–Hammett principle in the C? C bond‐formation step, which precedes a highly stereospecific enamine protonation.  相似文献   

9.
10.
A simple and efficient one-pot method has been developed for the synthesis of a-aminonitriles from aldehydes, amines and tributyltin cyanide in the presence of a catalytic amount of iodine with high yields. The reactions proceeded smoothly at room temperature via very simple procedure.  相似文献   

11.
12.
A direct asymmetric Michael reaction of α,β‐unsaturated aldehydes and ketones proceeded in the presence of two pyrrolidine‐type catalysts, a diphenylprolinol silyl ether and hydroxyproline, to afford synthetically useful δ‐keto aldehydes with excellent diastereo‐ and enantioselectivity. Although there are several iminium ions and enamines in the reaction mixture, the iminium ion generated by the former catalyst reacts preferentially with the enamine generated by the latter catalyst.  相似文献   

13.
Stereoselective methods for the synthesis of tetrahydro‐ß‐carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom, strictosidine synthases catalyze the C?C coupling through a Pictet–Spengler reaction of tryptamine and secologanin to exclusively form the (S)‐configured tetrahydro‐ß‐carboline (S)‐strictosidine. Investigating the biocatalytic Pictet–Spengler reaction of tryptamine with small‐molecular‐weight aliphatic aldehydes revealed that the strictosidine synthases give unexpectedly access to the (R)‐configured product. Developing an efficient expression method for the enzyme allowed the preparative transformation of various aldehydes, giving the products with up to >98 % ee. With this tool in hand, a chemoenzymatic two‐step synthesis of (R)‐harmicine was achieved, giving (R)‐harmicine in 67 % overall yield in optically pure form.  相似文献   

14.
Highly efficient catalytic asymmetric Claisen rearrangements of O‐propargyl β‐ketoesters and O‐allyl β‐ketoesters have been accomplished under mild reaction conditions. In the presence of the chiral N,N′‐dioxide/NiII complex, a wide range of allenyl/allyl‐substituted all‐carbon quaternary β‐ketoesters was obtained in generally good yield (up to 99 %) and high diastereoselectivity (up to 99:1 d.r.) with excellent enantioselectivity (up to 99 % ee).  相似文献   

15.
A highly efficient asymmetric ring‐opening reaction of cyclopropyl ketones with a broad range of thiols, alcohols and carboxylic acids has been first realized by using a chiral N,N′‐dioxide–scandium(III) complex as catalyst. The corresponding sulfides, ethers, and esters were obtained in up to 99 % yield and 95 % ee. This is also the first example of one catalytic system working for the ring‐opening reaction of donor–acceptor cyclopropanes with three different nucleophiles, let alone in an asymmetric version.  相似文献   

16.
Mild mannered! A highly diastereo‐ and enantioselective Mannich‐type reaction of glycine Schiff base 1 has been developed by using the N,N′‐dioxide L ‐CuII complex as a catalyst. Various optically active anti‐α,β‐diamino acid esters were obtained in good yields with up to 96:4 d.r. and 97 % ee. This straightforward method features a low catalyst loading and mild reaction conditions.

  相似文献   


17.
Better the second time around : The title compounds were synthesized by using a one‐pot double methylene transfer catalyzed by a heterobimetallic La/Li complex. Chiral amplification in the second step was the key to obtaining oxetanes in high enantiomeric excess (see scheme).

  相似文献   


18.
A robust heterogeneous self‐supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine‐cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self‐supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium‐alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed‐bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h?1 were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three‐component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α‐branched aliphatic aldehyde by using the three‐component continuous Strecker reaction.  相似文献   

19.
20.
The first iridium‐catalyzed intermolecular asymmetric allylic amination reaction with 2‐hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N‐substituted 2‐pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2‐hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98 % yield and 99 % ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号