首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new conjugated poly(p‐phenylene vinylene) (PPV) derivatives bearing triphenylamine side‐chain through a vinylene bridge, poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylene‐vinylene) (DP‐PPV), poly(2‐(3′‐(3″,7″‐dimethyloctyloxy)phenyl)‐1,4‐phenylenevinylene‐alt‐2‐(4′‐ (diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene) (DODP‐PPV), and poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene‐co‐2‐(3′,5′‐bis(3″,7″‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (DP‐co‐BD‐PPV), were synthesized according to the Gilch or Wittig method. Among the three polymers, the copolymer DP‐co‐BD‐PPV is soluble in common solvents with good thermal stability with 5% weight loss at temperatures higher than 386°C. The weight‐average molecular weight (Mw) and polydispersity index (PDI) of DP‐co‐BD‐PPV were 1.83 × 105 and 2.33, respectively. The single‐layer polymer light‐emitting diodes (PLEDs) with the configuration of Indium tin oxide (ITO)/poly (3,4‐ethylenedioxythiophene): poly(4‐styrene sulfonate)(PEDOT:PSS)/DP‐co‐BD‐PPV/Ca/Al were fabricated. The PLED emitted yellow‐green light with the turn‐on voltage of ca. 4.9 V, the maximum luminance of ca. 990 cd/m2 at 15.8 V, and the maximum electroluminescence (EL) efficiency of 0.22 cd/A. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The copolymers that are composed of poly(fluorene) (PF), poly(p‐phenylene), and Poly(p‐phenylenevinylene) as backbone and a large 4′‐(N,N′‐diphenylamino)diphenyl or 4′‐(N,N′‐diphenylamino)phenyl as pendent group were synthesized by the nickel(0)‐mediated polycoupling. The composition of the obtained copolymers was confirmed by H NMR. All the copolymers possessed a high weight‐average molecular weight and good solubility in common organic solvents. As the content of triphenyl amine pendants increases, the copolymers showed increased thermal stability due to increased glass transition temperature and increased hole injection ability because of decreased onset of the oxidation potential. In the photoluminescence spectra of copolymers, poly (BDAV30co‐DHF70) and poly(BDAPV30co‐DHF70) showed efficient energy transfer. indium tin oxide/poly(styrene sulfonate)‐doped poly(3,4‐ethylene dioxythiophene)/poly (BDAV30co‐DHF70)/LiF/Al device showed maximum brightness of 2267 cd/m2 and efficiency of 0.80 cd/A, with turn‐on voltage at 9.1 V. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 172–182, 2006  相似文献   

3.
Diphenylaminobiphenylated stryl based alternating copolymers with phenyl or fluorene, which were expected to have a terphenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant and a phenyl/fluorene/phenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant, were synthesized by a Suzuki coupling reaction. The obtained copolymers were confirmed with various types of spectroscopy. The alternating copolymers showed good hole‐injection properties because of their low oxidation potential and good solubility and high thermal stability with a high glass‐transition temperature. The alternating copolymers showed blue emissions because of the adjusted conjugation lengths; the maximum wavelength was 460 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} and 487 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl] vinylene‐alt‐9,9‐dihexylfluorene}. The maximum brightness of indium tin oxide/poly(3,4‐ethylene dioxythiophene)/polymer/LiF/Al devices with poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} or poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐9,9‐dihexylfluorene} as the emitting layer was 250 or 1000 cd/m2, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 341–347, 2007  相似文献   

4.
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005  相似文献   

5.
Novel L ‐alanine and L ‐glutamic acid derivatized, carbazole‐containing N‐propargylamides [N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide and N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] were synthesized and polymerized with (nbd)Rh+6‐C6H5B?(C6H5)3] (nbd = norbornadiene) as a catalyst to obtain the corresponding polymers with moderate molecular weights in high yields. Polarimetry, circular dichroism, and ultraviolet–visible spectroscopy studies revealed that both poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] took a helical structure with a predominantly one‐handed screw sense in tetrahydrofuran, CHCl3, and CH2Cl2. The helix content of poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] could be tuned by heat or the addition of a protic solvent, and the helical sense of poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] was inverted by heat in CHCl3 or in mixtures of tetrahydrofuran and CH2Cl2. Poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] also took a helical structure in film states. They showed small fluorescence in comparison with the monomers and redox activity based on carbazole. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 253–261, 2007  相似文献   

6.
Copolymerization of ornithine‐ and lysine‐derived N‐propargylamides, N‐α‐tert‐butoxycarbonyl‐N‐δ‐fluorenylmethoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 1 ), N‐α‐tert‐butoxycarbonyl‐N‐ε‐fluorenylmethoxycarbonyl‐L ‐lysine N′‐propargylamide ( 2 ), N‐α‐fluorenylmethoxycarbonyl‐N‐δ‐tert‐butoxycarbonyl‐L ‐ornithine N′‐propargylamide ( 3 ), and N‐α‐fluorenylmethoxycarbonyl‐N‐ε‐tert‐butoxycarbonyl‐L ‐lysine N′‐propargylamide (4) with dipropargyl adipate was carried out using (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in THF to obtain polymer gels in 80–93% yields. The gels adsorbed N‐benzyloxycarbonyl L ‐alanine, N‐benzyloxycarbonyl L ‐alanine methyl ester, and (S)‐(+)‐1‐phenyl‐1,2‐ethanediol preferably than the corresponding optical isomers. The order of chiral discrimination was poly( 1 ) > poly( 4 ) > poly( 2 ), poly( 3 ) gels. The fluorenylmethoxycarbonyl groups of the gels could be partly removed by piperidine treatment, leading to increase of adsorptivity but decrease of chiral recognition ability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4175–4182, 2008  相似文献   

7.
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006  相似文献   

8.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

9.
A series of near‐infrared (NIR) electrochromic aromatic poly(aryl ether)s containing N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine (TPPA) moieties in the backbone were prepared from the high‐temperature polycondensation reactions of a biphenol monomer, 2,5‐bis(diphenylamino)hydroquinone, with difluoro compounds. The obtained polymers were readily soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (182–205 °C) and high char yields (higher than 40% at 800 °C in nitrogen). The polymer films showed reversible electrochemical oxidation with high contrast ratio both in the visible range and NIR region, and also exhibited high coloration efficiency (CE), low switching time, and stability for electrochromic operation. The polyether TPPA‐a thin film revealed good CE in visible (CE = 217 cm2/C) and NIR (CE = 192 cm2/C) region with reversible electroactive stability (over 500 times within 5% loss relative to its initial injected charge). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5378–5385, 2009  相似文献   

10.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

11.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

12.
Poly(2‐hydroxyethyl acrylate)–poly(n‐butyl acrylate) block copolymers were synthesized with the reversible addition–fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2‐hydroxyethyl acrylate) or poly(n‐butyl acrylate) macro‐RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3–1.4). Copolymer self‐aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to DhNBA1.17NHEA0.57, where NBA is the number of repeating units of n‐butyl acrylate and NHEA is the number of repeating units of 2‐hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10?4 g L?1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2177–2194, 2006  相似文献   

13.
Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ‐N‐benzyl‐L‐phenylalaninato‐κ4O,O′:O,N)(μ‐formato‐κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ‐N‐benzyl‐L‐leucinato‐κ4O,O′:O,N)(μ‐formato‐κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two‐dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.  相似文献   

14.
Aspartic acid‐based novel poly(N‐propargylamides), i.e., poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid β‐benzyl ester N′‐propargylamide] [poly( 1 )] and poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid α‐benzyl ester N′‐propargylamide] [poly( 2 )] with moderate molecular weights were synthesized by the polymerization of the corresponding monomers 1 and 2 catalyzed with (nbd)Rh+6‐C6H5B?(C6H5)3] in CHCl3 at 30 °C for 2 h in high yields. The chiroptical studies revealed that poly( 1 ) took a helical structure in DMF, while poly( 2 ) did not in DMF but did in CH2Cl2, CHCl3, and toluene. The helicity of poly( 1 ) and poly( 2 ) could be tuned by temperature and solvents. Poly( 2 ) underwent solvent‐driven switch of helical sense, accompanying the change of the tightness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5168–5176, 2005  相似文献   

15.
Two organic–inorganic hybrid layered materials, namely poly[(μ‐1,4‐diaminobenzene‐κ2N:N′)[μ3‐sulfato(VI)‐κ4O:O′:O′′,O′′′]manganese], [Mn(SO4)(C6H8N2)]n, 1 , and poly[(μ‐1,4‐diaminobenzene‐κ2N:N′)[μ3‐sulfato(VI)‐κ4O:O′:O′′,O′′′]copper], [Cu(SO4)(C6H8N2)]n, 2 , have been synthesized using 1,4‐phenylenediamine (PPD) as an organic template and component (linker). Both materials form three‐dimensional frameworks. The crystal structures were determined using data from powder X‐ray diffraction measurements. The purity and morphology of the compounds were studied by elemental analyses and SEM investigations, and their thermal stabilities were determined by thermogravimetric and nonambient powder X‐ray diffraction measurements, which indicated that 1 is stable up to 537 K and 2 is stable up to 437 K.  相似文献   

16.
N,N′‐Pyromelliticdiimido‐di‐L ‐alanine ( 1 ), N,N′‐pyromelliticdiimido‐di‐L ‐phenylalanine ( 2 ), and N,N′‐pyromelliticdiimido‐di‐L ‐leucine ( 3 ) were prepared from the reaction of pyromellitic dianhydride with corresponding L ‐amino acids in a mixture of glacial acetic acid and pyridine solution (3/2 ratio) under refluxing conditions. The microwave‐assisted polycondensation of the corresponding diimide‐diacyl chloride monomers ( 5–7 ) with 4‐phenyl‐2,6‐bis(4‐aminophenyl) pyridine ( 10 ) or 4‐(p‐methylthiophenyl)‐2,6‐bis(4‐aminophenyl) pyridine ( 12 ) were carried out in a laboratory microwave oven. The resulting poly(amide‐imide)s were obtained in quantitative yields, and they showed admirable inherent viscosities (0.12–0.55 dlg?1), were soluble in polar aprotic solvents, showed good thermal stability and high optical purity. The synthetic compounds were characterized by IR, MS, 1H NMR, and 13C NMR spectroscopy, elemental analysis, and specific rotation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Two series of new poly(amide imide)s having (n‐alkyoxy)phenyloxy side branches with various lengths, poly{p‐phenyleneiminoterephthaloylimino‐p‐phenylene[3,6‐di(n‐alkyloxy)phenyloxy]pyromellitimide}s ( PC m TA s, m = 4, 8, 12) and poly{p‐phenyleneiminosebacoylimino‐p‐phenylene[3,6‐di(n‐alkyloxy)‐phenyloxy]‐ pyromellitimide}s ( PC m SeA s, m = 4, 8, 12), were prepared by condensation of terephthalamide‐N,N′‐4,4′‐dianiline ( TA ) and sebacamide‐N,N′‐4,4′‐dianiline ( SeA ) with 3,6‐di[4‐(n‐alkyloxy)phenyloxy]pyromellitic dianhydrides , respectively. The inherent viscosities of the polymers were in the 0.82–1.20 dL/g range. The polymers were highly soluble in N‐methylpyrolidinone (NMP), even at room temperature and soluble in other polar aprotic solvents on heating. The PC m TA s, which have aromatic backbones, were thermally more stable (431–442 °C) than the PC m SeA s, which have an octamethylene unit in the main chain (407–409 °C). Degradation of weight up to 900 °C corresponded with the loss of side chain contents. The PC m TA s exhibited no phase transition, whereas two endothermic peaks were observed for each of the PC m SeA s. Wide‐angle X‐ray diffractometer investigations revealed that both polymers are amorphous and the n‐alkyloxy side chains are present in a layered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3818–3825, 2001  相似文献   

18.
Novel poly(p‐phenylenevinylene) (PPV) copolymers derived from 1‐methoxy‐4‐octyloxyphenylene (MOP), 2,1,3‐benzothiadiazole (BT), and trans‐1,2‐bis(tributylstannyl)ethylene were first prepared by a palladium‐catalyzed Stille coupling reaction. The feed ratios of MOP to BT were 99.5:0.5, 99:1, 95:5, 85:15, 70:30, and 50:50. An efficient energy transfer from the 2‐methoxy‐5‐octyloxy‐p‐phenylenevinylene segment to the narrow‐band‐gap units was observed. The poly(2‐methoxy‐5‐octyloxy‐p‐phenylenevinylene‐2,1,3‐benzothiadiazolevinylene) copolymers emitted deep red light. The maximum electroluminescence emission of these PPV copolymers occurred at 659–724 nm and was accompanied by gradual redshifting with an increasing BT concentration. The photophysical properties were examined in comparison with those of copolymers based on BT and fluorene or N‐alkylcarbazole doped with the same BT concentration in the copolymer main chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2325‐2336, 2005  相似文献   

19.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

20.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号