首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect is studied of the layer formation conditions on the molecular arrangement of copper tetra- tert-butyl phthalocyanine (CuPctBu4) and copper tetra- tert-butyl tetrabenzotriazaporphin (CuThptBu4) at the air–water interface. The decrease in initial surface concentration of these compounds is shown to affect the molecular orientation, as indicated by the increase in the area per molecule. The data are interpreted in terms of formation of CuPctBu4 and CuThptBu4 monolayers with a face-on molecular arrangement when the initial surface concentration is sufficiently small (N less than 1.6 × 10–7 mole/m2 for CuPctBu4 and N less than 4 × 10–7 mole/m2 for CuThptBu4) and changes in the molecular orientation to edge-on when the N values are higher. It is emphasized that the edge-on orientation on the water surface is not only a molecular but a collective property of the azaporphyrine supramolecular assembly.  相似文献   

2.
The unique properties of Langmuir film formation were utilized in assembling a thin skin of an asymmetric membrane. An octadecyltrimethoxysilane (ODTMS) Langmuir monolayer was formed at the air–water interface and served as the substrate for growing a bulky sol–gel polymer in situ. The latter was based on the electrochemical deposition of tetramethoxysilane dissolved in the water subphase by means of horizontal touch electrochemistry. The resultant asymmetric layer that consisted of a thin hydrophobic ODTMS Langmuir film connected to a bulk hydrophilic sol–gel network was studied in situ and ex situ by using various techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy (EIS), scanning electron microscopy, transmission electron microscopy (TEM), and goniometry. We found that a porous hydrophilic film grew on top of a hydrophobic layer as was evident from TEM, contact angle, and EIS analyses. The film thickness and film permeability could be controlled by changing the deposition conditions such as the potential window applied and its duration. Hence, this method offers an alternative approach for assembling asymmetric films for various applications  相似文献   

3.
Light‐sensitizer functionalized organic–inorganic hybrid materials have attracted much attention owing to their potential applications in the fields of optoelectronics, heterogeneous catalysis, sensors, and nanotechnology. Here, an interfacial self‐assembly of zero‐dimensional (0D) silica@multiporphyrin array nanohybrids and their 3D Langmuir–Blodgett (LB) films is reported. Photoactive tetrapyridylporphyrin (TPyP) was first assembled on the silica nanoparticles’ surfaces via silane, substitution, and coordination reactions to produce nanoSiO2@(Pd‐TPyP)n hybrids. Then, the Cd2+‐nanoSiO2@(Pd‐TPyP)n monolayers and LB films were constructed on the CdCl2 subphase surface. These monolayers and LB films displayed stronger stability, as well as more uniform and closely packed nanoparticle arrays compared with those prepared on the pure water surface, owing to the formation of strong network‐like Pd‐ and Cd‐TPyP coordination units, which significantly enhanced the nanoparticles’ interaction. Further, compared with that of the 0D nanoSiO2@(Pd‐TPyP)n hybrids, the degradation efficiency was nearly 20 times higher when the hybrids’ LB films were used as light‐sensitizers for the photocatalytic degradation of RhB. Finally, flexible photochromic devices were constructed by using the LB films sandwiched between two electrodes, which displayed a reversible photoinduced redox reaction of viologen together with a color change process. Because TPyP was strongly immobilized on the nanoparticles’ surfaces and the particles were connected through the Py‐Pd2+‐Py and Py‐Cd2+‐Py coordination units with the 3D network‐like architecture, the present nanohybrids and LB films had good stability and reusability.  相似文献   

4.
Here we have investigated the influence of the antenna group position on both the formation of chiral amphiphilic EuIII‐based self‐assemblies in CH3CN solution and, on the ability to form monolayers on the surface of quartz substrates using the Langmuir–Blodgett technique, by changing from the 1‐naphthyl ( 2(R) , 2(S) ) to the 2‐naphthyl ( 1(R) , 1(S) ) position. The evaluation of binding constants of the self‐ assemblies in CH3CN solution was achieved using conventional techniques such as UV/Visible and luminescence spectroscopies along with more specific circular dichroism (CD) spectroscopy. The binding constants obtained for EuL , EuL2 and EuL3 species in the case of 2‐naphthyl derivatives were comparable to those obtained for 1‐naphthyl derivatives. The analysis of the changes in the CD spectra of 1(R) and 1(S) upon addition of EuIII not only allowed us to evaluate the values of the binding constants but the resulting recalculated spectra may also be used as fingerprints for assignment of the chiral self‐assembly species formed in solution. The obtained monolayers were predominantly formed from EuL3 (≈85 %) with the minor species present in ≈15 % EuL2 .  相似文献   

5.
Stability and aggregation structures of various economically viable surfactants for CO(2) are reported. The compounds are either commercially available octylphenol nonionics (Triton X-100, X-100 reduced, and X-45) or custom-made analogues of aerosol-OT (J. Am. Chem. Soc. 123 (2001) 988). These were selected to reveal the influence of chain terminal group structure, namely highly methylated t-butyl units, on solubility and aggregation in CO(2). In addition the mean ethylene oxide block length is varied for the Triton surfactants (X-100 approximately EO(10), X-45 approximately EO(8)). High-pressure small-angle neutron scattering (SANS) experiments revealed the presence of aggregates, consistent with spheroidal reverse micelles. The nonionics show a temperature and pressure dependence on solubility. These results confirm the special affinity of highly methyl-branched tails for CO(2). However, none of these systems were able to disperse significant amounts of water or brine; therefore hydrated reversed micelles or microemulsion droplets were not stabilized. Hence the utility of these cheap methyl-branched surfactants in CO(2) is limited, and so groups of greater CO(2)-philicity are needed to achieve the goal of water-hydrocarbon surfactant-CO(2) dispersions.  相似文献   

6.
The characteristic electronic absorption of a zwitterionic molecule arising from an intramolecular charge‐transfer transition observed in the solution and the bulk solid states vanishes completely when the molecules are assembled into mono‐ and multilayer Langmuir–Blodgett films (see figure). Microscopy and spectroscopy investigations and computational modeling provide insight into this remarkable phenomenon.

  相似文献   


7.
Langmuir films of 4‐{[4‐({4‐[(trimethylsilyl)ethynyl]phenyl}ethynyl)phenyl]ethynyl} benzenaminium chloride ([ 1 H ]Cl) undergo anion metathesis when assembled on an aqueous auric acid (HAuCl4) subphase. Subsequent transfer to solid supports gives well‐formed Langmuir–Blodgett (LB) monolayers of [ 1 H ]AuCl4 in which the trimethylsilyl group serves as the surface contacting group. Photoreduction of the aurate on these monolayers leads to the formation of metallic gold nanoislands, which were distributed over the surface of the film. Electrical properties of these nascent devices were determined by recording current–voltage (IV) curves with conductive atomic force microscopy (c‐AFM) using the PeakForce tunneling AFM (PF‐TUNA) mode. This gives consistent sigmoidal IV curves that are indicative of well‐behaved junctions free of metallic filaments and short circuits. The photoreduction of a metal precursor incorporated onto monomolecular films is therefore proposed as an effective method for the fabrication of molecular junctions.  相似文献   

8.
The ability to self‐assemble nanosized ligand‐stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one‐pot two‐step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4‐(dodecyloxy)benzoic acid (i.e., an X‐type liquid‐crystalline ligand) as a model LC system (termed ZnO‐LC1 NCs ). Langmuir and Langmuir–Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO‐interdigitation process mediated by the anchored liquid‐crystalline shell. The ordered superstructures form according to mechanism based on a Z nO‐ i nterdigitation p rocess mediated by l iquid c rystals (termed ZIP‐LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin‐film investigation. We collect the films from the air/water interface in powder form ( ZnO‐LC1 LB ), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X‐ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.  相似文献   

9.
The Langmuir–Blodgett (L–B) technique has been employed for the construction of hybrid films consisting of three components: surfactant, clay, and lysozyme (Lys). The surfactants are octadecylammonium chloride (ODAH) and octadecyl ester of rhodamine B (RhB18). The clays include saponite and laponite. Surface pressure versus area isotherms indicate that lysozyme is adsorbed by the surfactant–clay L–B film at the air–water interface without phase transition. The UV‐visible spectra of the hybrid film ODAH–saponite–Lys show that the amount of immobilized lysozyme in the hybrid film is (1.3±0.2) ng mm?2. The average surface area (Ω) per molecule of lysozyme is approximately 18.2 nm2 in the saponite layer. For the multilayer film (ODAH–saponite–Lys)n, the average amount of lysozyme per layer is (1.0±0.1) ng mm?2. The amount of lysozyme found in the hybrid films of ODAH–laponite–Lys is at the detection limit of about 0.4 ng mm?2. Attenuated total reflectance (ATR) FTIR spectra give evidence for clay layers, ODAH, lysozyme, and water in the hybrid film. The octadecylammonium cations are partially oxidized to the corresponding carbamate. A weak 1620 cm?1 band of lysozyme in the hybrid films is reminiscent of the presence of lysozyme aggregates. AFM reveals evidence of randomly oriented saponite layers of various sizes and shapes. Individual lysozyme molecules are not resolved, but aggregates of about 20 nm in diameter are clearly seen. Some aggregates are in contact with the clay mineral layers, others are not. These aggregates are aligned in films deposited at a surface pressure of 20 mN m?1.  相似文献   

10.
We investigated the influence of arachidic acid/cadmium dication (AA/Cd(2+)) as a transfer promoter for the deposition of dicyanopyrazine-linked porphyrin (2-DCPP) Langmuir-Blodgett (LB) films on both hydrophobic and hydrophilic substrates. In the case of LB deposition on a hydrophilic substrate, the presence of AA/Cd(2+) does not improve 2-DCPP LB deposition. The poor transfer in the case of the hydrophilic surface is believed to be due to 2-DCPP not wetting the surface during the down-stroke deposition, and this is not improved by the transfer agent. However, on a hydrophobic substrate, deposition of 2-DCPP is significantly improved by the presence of AA/Cd(2+). Comparison of the UV-visible spectrum of a 2-DCPP LB film with that of 2-DCCP dissolved in chloroform reveals that the Soret and Q bands for the 2-DCPP LB film are broadened and red-shifted due to aggregation of porphyrin rings in the LB film. UV-visible spectral changes and ellipsometry as a function of the number of deposition layers suggest continuous transfer of 2-DCPP/AA onto the hydrophobic substrate and reproducibility in the deposition process. The Soret and Q bands of the 2-DCPP LB film upon acid vapor exposure have also been investigated, and these measurements may have chemical sensor applications.  相似文献   

11.
Langmuir–Blodgett (LB) films were prepared from poly(methylphenylsilane) bearing electron acceptor π-conjugated substituents. The small limiting area (0.078 nm2) per one repeating unit of polysilane (PSi) in monomolecular film and the large thickness of the film (6 nm) suggest that the polymer chains are not fully spread on water surface. The electrical and photoelectrical properties of Al/LB film/Au sandwich cells containing various numbers of the polysilane layers were studied. Holes were transported from the Al electrode through the LB film to the Au electrode when the light was absorbed by the polysilane. The highest photovoltaic effect occurred in the first monolayer of polysilane at the Al contact. The cell resistivity and the photovoltage were decreased by parallel conductance of defects in the films consisting of small numbers of PSi layers.  相似文献   

12.
A tetraphenyl porphyrin derivative with two C16 alkyl chains covalently bound to each of the four peripheral phenyl rings through ether linkages formed multilayer clusters or vesicles at the air–water surface. More interestingly, spherical vesicles were also formed when deposited on appropriate solid surfaces, and these vesicles were stable even in dry conditions. Various microscopic images of the cast film deposited on a mica surface confirmed closed‐ended nanotube/nanorod‐type formation with necking and bulging. These narrow tubes are proposed to be intermediates for the formation of vesicles by fission at either side of the bulge. Such vesicular formation is not common when either cast or Langmuir–Blodgett films were deposited on a solid surface.  相似文献   

13.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

14.
Recently, silsesquioxanes have been recognized as a new group of film‐forming materials. This study has been aimed at determining the effect of the kind of functional groups present in two different open‐cage structure POSS molecules on the possibility of the formation of Langmuir monolayers and their properties. To achieve this goal, two new POSS derivatives (of open‐cage structures) containing polyether and fluoroalkyl functional groups have been synthesized on the basis of a hydrosilylation process. An optimization of the process was performed, which makes it possible to obtain the above‐mentioned derivatives with high yields. In the next step, the Langmuir technique was applied to measurements of the surface pressure (π) ? the mean molecular area (A) isotherms during the compression of monolayers formed by molecules of the two POSS derivatives considered. Subsequently, the monolayers were transferred onto quartz plates according to the Langmuir–Blodgett technique. Both derivatives are able to form insoluble Langmuir films at the air–water interface, which can be transferred onto a solid substrate and effectively change its wetting properties.  相似文献   

15.
A novel perylenetetracarboxylic diimide molecule (2PDI-TAZ), which contains two perylenetetracarboxylic diimide (PDI) attached to a melamine headgroup, was designed and synthesized. Supramolecular self-assemblies were studied in Langmuir and Langmuir–Blodgett films. Surface pressure–area isotherm measurements and the spectroscopic studies indicate that the 2PDI-TAZ molecules adopted a face-to-face configuration and edge-on orientation in Langmuir or the multilayer LB films. The presence of the barbituric acid in subphase change the hydrophilicity of 2PDI-TAZ due to the hydrogen bonding between melamine and barbituric acid, which has been revealed by the πA isotherms and the FT-IR spectra. Transmission electron microscopy images of the LB films deposited from the barbituric acid solution revealed uniform nanowire morphology while the X-ray diffraction studies indicate that the molecules in the solid film packed with high order. The strong excimer emission of 2PDI-TAZ in LB films suggests enforced face-to-face configuration for the PDI unites in LB films in relative to that in solution.  相似文献   

16.
Films of a few layers in thickness of reduced graphite oxide (RGO) sheets functionalized by the zwitterionic surfactant N‐dodecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propanesulfonate (DDPS) are obtained by using the Langmuir–Blodgett method. The quality of the RGO sheets is checked by analyzing the degrees of reduction and defect repair by means of X‐ray photoelectron spectroscopy, atomic force microscopy (AFM), field‐emission scanning electron microscopy (SEM), micro‐Raman spectroscopy, and electrical conductivity measurements. A modified Hummers method is used to obtain highly oxidized graphite oxide (GO) together with a centrifugation‐based method to improve the quality of GO. The GO samples are reduced by hydrazine or vitamin C. Functionalization of RGO with the zwitterionic surfactant improves the degrees of reduction and defect repair of the two reducing agents and significantly increases the electrical conductivity of paperlike films compared with those prepared from unfunctionalized RGO.  相似文献   

17.
Nonpolar fluorophilic/lipophilic tetrablock amphiphiles are investigated on the surface of water and on solid substrates using compression isotherms, Brewster angle microscopy, and atomic force microscopy. At low pressures, the tetrablocks form monolayers of closely packed surface hemimicelles. Further compression causes a 2D/3D transition. At the end of the plateau, half of the deposited material is expelled forming a second monolayer on top of the initially formed monolayer. Both layers of the films consist of surface micelles, thus providing the first example of spontaneous or compression‐driven stacking of self‐assembled nano‐objects.  相似文献   

18.
19.
We investigate two‐component Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC)/C60 by recording surface pressure/area (π/A) and surface potential/area (ΔV/A) isotherms and by direct Brewster angle microscopy (BAM) imaging. Atomic force microscopy (AFM) is employed to study morphologies of the mixed monolayers transferred to a solid substrate by the Langmuir–Blodgett technique. C60 is shown to have little influence on isotherms of the DPPC/C60 monolayers even at a molar fraction as high as XC60=0.3. The elastic modulus ( ) versus π curves of the DPPC/C60 monolayers almost overlay each other, as well as that of pure DPPC, that is, the elasticities of pure DPPC monolayers and DPPC/C60 monolayers are remarkably similar. AFM studies reveal that fullerene flocs form at low surface pressures (π≤15 mN m?1), are gradually disaggregated and dispersed in the DPPC monolayer with increasing surface pressure up to 35 mN m?1, and are then progressively squeezed out to form protruded islands as the surface pressure increases up to 65 mN m?1. Our work provides experimental support to the computational result that C60 can dissolve in lipid bilayers without significantly compromising their mechanical properties, a finding which has important implications for the toxicity and development of drug vehicles from fullerene materials.  相似文献   

20.
《Chemphyschem》2003,4(1):67-71
Correlation of molecular organization in crystals and in ultrathin films is of fundamental interest in the design of molecular materials based on thin films. We have chosen as a test case, N‐(2,4‐dinitrophenyl)‐n‐octadecylamine (DNPOA), a potential candidate for the fabrication of Langmuir–Blodgett (LB) films for quadratic nonlinear optical applications. Like several other 4‐nitroaniline derivatives, DNPOA does not form stable monolayers at the air–water interface. This has precluded investigations of their organization in LB films. We have stabilized composite Langmuir films of DNPOA with the phospholipid molecule DSPC and fabricated their LB films. Successful growth of single crystals of DNPOA allowed structure determination and detailed analysis of molecular associations in the solid state. Electronic absorption spectra of DNPOA in solution, in the solid state and in the LB film are investigated. Modeling of the various spectral signatures by semiempirical computations on molecular clusters extracted from the crystal lattice provides insight into the correlation between the molecular organization in crystals and in LB films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号