首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through X‐ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near‐edge X‐ray absorption fine structure (NEXAFS) and resonant inelastic X‐ray scattering (RIXS) measurements at the nitrogen K‐edge of para‐aminobenzoic acid reveal both pH‐ and solvent‐dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.  相似文献   

2.
《Chemphyschem》2004,5(1):27-35
Detection of ultrafast transient structures and the evolution of ultrafast structural intermediates during the course of reactions has been a long standing goal of chemists and biologists. This article will be restricted to nanosecond, picosecond and shorter time‐resolved extended X‐ray absorption fine structure (EXAFS) studies, its aim being to present the progress and problems encounter in measurements and understanding the structure of transients. The recent advances in source technology has stimulated a wide variety of novel experiments using both synchrotrons and smaller laboratory size systems. With more efficient X‐ray lenses and detectors many of the previously difficult experiments to perform, because of the exposure time required and weak signals, will now be easily performed. The experimental system for the detection of ultrafast time‐resolved EXAFS spectra of molecules in liquids is described and the method for the analysis of EXAFS spectra to yield transient structures is given. We believe that utilizing our table‐top ultrafast X‐ray source and the polycapillary optics in conjunction with dispersive spectrometer and charge coupled devices (CCD) we will be able to determine the structure of many reaction intermediates and excited states of chemical and biological molecules in solid and liquid state.  相似文献   

3.
The structures formed during the photodicosiation of CBr4 in alcohol solution have been measured by means of a novel ultrafast time‐resolved x‐ray absorption fine structure (EXAFS) experimental system, suitable for the direct determination of ultrafast transient structures of molecules in the liquid and solid phase. The EXAFS spectra of the starting and final products of the reaction were measured and analyzed.  相似文献   

4.
The mechanism of a photochemical reaction involves the formation and dissociation of various short-lived species on ultrafast timescales and therefore its characterization requires detailed structural information on the transient species. By making use of a structurally sensitive X-ray probe, time-resolved X-ray liquidography (TRXL) can directly elucidate the structures of reacting molecules in the solution phase and thus determine the comprehensive reaction mechanism with high accuracy. In this work, by performing TRXL measurements at two different wavelengths (400 and 267 nm), the reaction mechanism of I3 photolysis, which changes subtly depending on the excitation wavelength, is elucidated. Upon 400 nm photoexcitation, the I3 ion dissociates into I2 and I. By contrast, upon 267 nm photoexcitation, the I3 ion undergoes both two-body dissociation (I2+I) and three-body dissociation (I+2I) with 7:3 molar ratio. At both excitation wavelengths, all the transient species ultimately disappear in 80 ns by recombining to form the I3 ion nongeminately. In addition to the reaction dynamics of solute species, the results reveal the transient structure of the solute/solvent cage and the changes in solvent density and temperature as a function of time.  相似文献   

5.
Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers.  相似文献   

6.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   

7.
Structural and electrical properties of semicrystalline P3HT cast films onto Si/SiO2 surface are studied during the solidification under applied electric field in lateral OFET geometry. During evaporation of the solvent, the formation of P3HT crystallites is monitored simultaneously by time‐resolved X‐ray diffraction and by source‐drain current measurements. The electrical current is reaching its maximum in two pronounced regimes already before complete solidification of the polymer as detected by X‐ray diffraction intensities. The monitored complex time dependence of current and X‐ray intensities reveals a highest conducting level for the gel‐like state.  相似文献   

8.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

9.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

10.
The preparation of palladium nanoparticles supported on acetylacetone‐modified silica gel and their catalytic application for Heck olefination of aryl halides were investigated. The catalyst was characterized using X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission and scanning electron microscopies. The supported palladium nanoparticles are demonstrated to be a highly active and reusable catalyst for the Heck reaction. Several reaction parameters, including type and amount of solvent and base, were evaluated. The heterogeneity of the catalytic system was investigated with results indicating that there is a slight palladium leaching into the reaction solution under the applied reaction conditions. Despite this metal leaching, the catalyst can be reused nine times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new heterogeneous catalyst, lanthanum immobilized on chitosan, was synthesized and used for the aza‐Michael reaction of β‐enaminone under microwave irradiation. The characteristic structural features of the catalyst were determined using Fourier transform infrared spectroscopy, powder X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, transmission and scanning electron microscopies and inductively coupled plasma atomic emission spectroscopy. The stability of the catalyst was evaluated using thermogravimetric analysis. The use of recyclable catalyst and glycerol as solvent makes this procedure environmentally benign and economically viable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Piperazine‐functionalized nickel ferrite (NiFe2O4) nanoparticles were synthesized as recoverable heterogeneous base catalysts using a routine method. The synthesized materials were characterized using various spectroscopic techniques such as infrared, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetry analysis, and vibrating sample magnetometry. Catalytic efficiency was investigated in the synthesis of 2‐amino‐4H‐chromene derivatives via a one‐pot three component reaction of aldehyde and malononitrile with β or α‐naphthol/5‐methyle resorcinol under solvent‐free conditions with good to high yields. This method is operationally simple and has several advantages such as good to high yield, short reaction times, solvent‐free conditions, and easy synthesis. Moreover, the catalyst was recovered easily using an external magnet and reused three times without distinctive loss in catalytic activity.  相似文献   

13.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

14.
Structural characterization of poly(dodecamethylen‐di‐O‐methyl‐L‐tartaramide) was carried out with optical microscopy, thermal analysis, X‐ray diffraction, and electron microscopy. Two different crystalline forms were found in accordance with the thermograms, powder and fiber X‐ray diffraction diagrams. The electron microscopy allows corroboration of the morphological and crystallographic differences. Molecular modeling was used to conclude the structural analogies and differences between the two crystalline forms that were related to the chain packing and orientation in the crystal cell, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2523–2530, 2002  相似文献   

15.
Using time‐resolved monochromatic high energy X‐ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2(BDC)3(DMF)2]?H2O (BDC=benzene‐1,4‐dicarboxylate and DMF=N,N‐dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb3+ is replaced by DMF as the reaction progresses.  相似文献   

16.
The development of a bench‐top‐type system for simultaneous measurement of X‐ray diffraction and Raman spectra has been made to investigate structural changes in the phase transitions of chain molecules such as polyethylene, n‐alkane, and so forth from various viewpoints. For the X‐ray diffraction measurement an imaging plate or a charge‐coupled device camera was used as a two‐dimensional detector. For the Raman spectral measurement a miniature Raman spectrometer was used with optical fibers for the irradiation of incident laser beams and collection of scattered signals. For example, in the heating process of the n‐C30H62 sample, the phase transition from orthorhombic‐to‐hexagonal lattices could be detected clearly by the X‐ray and Raman measurements. By comparing these two different types of data in detail, an intimate relationship between conformational disordering and rotational motion of molecular chains is detected more clearly than before. Also, similar discussion can be made for the orthorhombic‐to‐hexagonal phase transition of the geometrically constrained polyethylene sample occurring immediately below the melting point. Another example concerns the structural change in the photoinduced solid‐state polymerization of cis,cis‐diethylmuconate single crystal. From the shifts in the X‐ray reflection position and Raman frequency characteristic of the produced polymer, it was found that the molecular deformation of the polymer chains and lattice strain was induced in the early stage of the polymerization reaction. For the ferroelectric‐phase transition of vinylidene fluoride copolymer, the simultaneous measurement was made for collecting triple information of small‐angle and wide‐angle X‐ray scatterings and Raman spectra to know the relationship between the structural change in the crystal lattice and the morphological change in the lamellar stacking mode. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 495–506, 2002; DOI 10.1002/polb.10112  相似文献   

17.
3‐methyl‐1‐sulfonic acid imidazolium tetrachloroferrate {[Msim]FeCl4} was prepared and fully characterized by fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX) and vibrating sample magnetometer (VSM) and used, as an efficient catalyst, for the tandem reaction of β‐naphthol with aromatic aldehydes and benzamide at 110 °C under solvent‐free conditions to give 1‐amidoalkyl‐2‐naphthols in high yields and very short reaction times.  相似文献   

18.
The recent advances in the study of light emission from matter induced by synchrotron radiation: X‐ray excited optical luminescence (XEOL) in the energy domain and time‐resolved X‐ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X‐ray photons in, optical photons out techniques with time gating coincide with advances in third‐generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light‐emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si–CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.  相似文献   

19.
The title compound, C21H14N4O2S, belongs to a family of molecules possessing nonlinear optical properties in solution. Its structure has been solved from laboratory X‐ray powder diffraction data using a new direct‐space structure solution method, where the atomic coordinates are directly used as parameters and the molecular geometry is described by restraints. The molecular packing is controlled by two systems of π–π interactions and one weak edge‐to‐face interaction.  相似文献   

20.
For the structural characterization of nanoscale objects, X‐ray diffraction is widely used as a technique complementing local probe analysis methods such as scanning electron microscopy and transmission electron microscopy. Details on strain distributions, chemical composition, or size and shape of nanostructures are addressed. X‐ray diffraction traditionally obtains very good statistically averaged properties over large ensembles—provided this averaging is meaningful for ensembles with sufficiently small dispersion of properties. In many cases, however, it is desirable to combine different analysis techniques on exactly the same nano‐object, for example, to gain a more detailed insight into the interdependence of properties. X‐ray beams focused to diameters in the sub‐micron range, which are available at third‐generation synchrotron sources, allow for such X‐ray diffraction studies of individual nano‐objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号