首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将一步法合成的中空介孔碳球(HMCS)修饰在丝网印刷碳电极(SPCE)上,得到了用于尼古丁电化学检测的新型电极(HMCS/SPCE)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、粉末X射线衍射(XRD)、X射线光电子能谱(XPS)以及拉曼光谱等方法对HMCS及修饰电极HMCS/SPCE进行表征。由于HMCS具有较大的电化学活性面积和良好的导电性,修饰电极HMCS/SPCE对尼古丁表现出良好的电催化活性。在优化实验条件下,电极HMCS/SPCE对尼古丁的检测线性范围为0~500μmol/L,灵敏度为0.850 m A/(cm~2·mmol·L~(-1)),检出限为0.058μmol/L。制备的传感器具有重复性好、稳定性高等特点,可用于实际烟草样品中尼古丁的检测。  相似文献   

2.
以间苯三酚-甲醛为碳源前驱体, 嵌段聚合物F127 (PEO106PPO70PEO106)为模板剂, 在水相中快速合成了介孔碳材料. 将其应用于辣根过氧化物酶的固定化, 并初步研究了固定化对酶稳定性的影响. 利用TEM和SEM观察该材料的微观结构, 通过N2吸附-脱附技术对介孔碳材料的孔结构和孔容等进行了表征. 结果表明, 介孔碳材料具有蠕虫状介孔结构, 孔径可在5.6~7.6 nm之间调变, 相应的比表面积介于691.1~787.8 m2/g, 且随着反应体系中盐酸浓度的增加, 所得材料的孔径、比表面积和孔容等均呈现减小的趋势. 固定在介孔碳中的辣根过氧化物酶, 保持了其蛋白质二级结构, 且与游离酶相比, 固定化酶的热稳定性、pH稳定性和操作稳定性都有明显的提高. 经多次循环操作, 固定化酶依然保持较高的活性, 说明其具有良好的可重复利用价值.  相似文献   

3.
4.
5.
Mesoporous Trimetallic PtPdRu Spheres with well‐defined spherical morphology and uniformly sized pores were synthesized in an aqueous solution using ascorbic acid as the reducing agent and triblock copolymer F127 as the pore directing agent. These mesoporous PtPdRu spheres exhibited enhanced electrocatalytic activity compared to commercial Pt black, resulting in a ~4.9 times improvement in mass activity for the methanol oxidation reaction. The excellent electrocatalytic activity and stability are due to the unique mesoporous architecture and electronic landscape between different elements.  相似文献   

6.
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare‐earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as‐prepared hollow rare‐earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low‐energy‐consuming approach to synthesize highly stable and dispersive gold nanoparticle–yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4‐nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare‐earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk–shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica‐coated nanocomposites.  相似文献   

7.
中空纳米二氧化硅微球的制备及表征   总被引:2,自引:0,他引:2  
本文介绍了一种制备中空纳米二氧化硅微球的新方法。利用模板首先合成介孔纳米二氧化硅微球,再用水热反应法,成功制备了非功能化和巯基、氨基功能化中空纳米二氧化硅微球。利用透射电子显微镜,热重分析等手段对其形貌进行了表征。另外,对中空介孔纳米二氧化硅微球的形成机制进行了探讨。  相似文献   

8.
The preparation of size‐controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non‐linear magnetic properties and a magnetic moment of approximately 229 emu g?1, which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls.  相似文献   

9.
有序介孔碳的简易模板法制备与电化学电容性能研究   总被引:8,自引:0,他引:8  
0引言电化学电容器(Electrochemical Capacitors),又称为超级电容器(supercapacitors)是介于传统电容器和二次电池之间的一种新型储能装置,它具有循环寿命长、比容量高、能快速充放电等优点[1,2]。近年来随着电子、电气设备的日趋小型化以及电动汽车工业的不断发展,作为后备电源和记忆候补装置的超级电容器日益引起了人们的广泛关注。碳材料由于具有成本低、比表面积大、导电性优良、制备电极工艺简单等特点,一直是超级电容器电极材料的首选。其中,活性炭是最早采用的多孔电极材料,其比表面积可高达2500 ̄3000m·2g-1[3]。然而,活性炭材料…  相似文献   

10.
Mesoporous carbon materials: synthesis and modification   总被引:1,自引:0,他引:1  
Porous carbon materials are of interest in many applications because of their high surface area and physicochemical properties. Conventional syntheses can only produce randomly porous materials, with little control over the pore-size distributions, let alone mesostructures. Recent breakthroughs in the preparation of other porous materials have resulted in the development of methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines. Current syntheses can be categorized as either hard-template or soft-template methods. Both are examined in this Review along with procedures for surface functionalization of the carbon materials obtained.  相似文献   

11.
A facile approach for the synthesis of ultralight iron oxide hierarchical structures with tailorable macro‐ and mesoporosity is reported. This method entails the growth of porous Prussian blue (PB) single crystals on the surface of a polyurethane sponge, followed by in situ thermal conversion of PB crystals into three‐dimensional mesoporous iron oxide (3DMI) architectures. Compared to previously reported ultralight materials, the 3DMI architectures possess hierarchical macro‐ and mesoporous frameworks with multiple advantageous features, including high surface area (ca. 117 m2 g?1) and ultralow density (6–11 mg cm?3). Furthermore, they can be synthesized on a kilogram scale. More importantly, these 3DMI structures exhibit superparamagnetism and tunable hydrophilicity/hydrophobicity, thus allowing for efficient multiphase interfacial adsorption and fast multiphase catalysis.  相似文献   

12.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   

13.
A site‐selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli‐responsive ordered SBA‐15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant‐template sol‐gel method and control of transport through polymerization of N‐isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3 g?1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA‐15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 °C, indicating a typical thermosensitive controlled release.  相似文献   

14.
Ruthenium (Ru)@Ordered mesoporous carbon (OMC) is a key catalyst in fine-chemical production. In general, the OMC support is prepared by a wet self-assembly requiring excessive solvent, toxic phenol–aldehyde precursors and a long reaction time, followed by post-immobilization to load Ru species. Herein, we wish to report a solid-state, rapid, and green strategy for the synthesis of Ru@OMC with biomass tannin as the precursor. The chemistry essence of this strategy lies in the mechanical-force-driven assembly, during which tannin-metal (Zn2+ and Ru3+) coordination polymerization and hydrogen-bonding interactions between tannin-block copolymer (PEO-PPO-PEO, F127) simultaneously occur. After thermal treatment, Ru@OMC catalysts with mesoporous channels, narrow pore-size distribution (≈7 nm), and high surface area (up to 779 m2 g−1) were directed by F127 micelles. Meanwhile, the Zn2+ ions dilute Ru3+ and avoid the sintering of Ru species, resulting in Ru clusters around 1.4–1.7 nm during carbonization (800 °C). Moreover, the Ru@OMC catalyst afforded a good activity (TOF: up to 4170 h−1) in the selective oxidation of benzyl alcohol to benzaldehyde by molecular oxygen.  相似文献   

15.
简易模板法制备有序介孔碳   总被引:1,自引:0,他引:1  
通过一种简易的模板法制备了有序介孔碳,即硅/P123三嵌段共聚物复合物经硫酸处理后,再加入蔗糖碳源经碳化和除硅处理合成出有序介孔碳。该方法与传统硬模板相比,其合成工序简单,成本更低;与其他简化合成方法相比,避免了由碳源不足而造成的介孔碳有序性低的缺点。通过小角XRD、N2吸脱附和HRTEM对样品及其中间过程进行了表征。结果表明,自晶化过程后,样品在合成的各个时期均保持着有序的介孔结构,当蔗糖添加量为1.5g时合成出的介孔碳材料有序性最高,比表面积和孔容也最高,分别为1261m2·g-1,1.03cm3·g-1。  相似文献   

16.
田勇  王加  钟国英  林汉森  王秀芳 《化学进展》2012,24(7):1270-1276
有序介孔炭作为一类崭新的功能材料,因具有高比表面积、孔径分布集中、孔径结构可调、大孔容、高度热稳定性和机械稳定性等优异特性而备受瞩目,广泛应用于水体净化、催化及光、电、磁等领域。其极佳的生物相容性使其在药物负载领域有巨大的潜在应用价值。根据磁性有序介孔炭材料的最新研究动态和应用研究热点,本文综述了磁性有序介孔炭合成作用机理、药物负载效率和介孔结构(如比表面、孔容、孔径分布)制约因素。讨论分析了各种合成方法的优劣和孔结构参数制约载药量的研究瓶颈。并着重对磁性有序介孔炭在医药领域的新应用进行了阐述和评价。旨在为探讨磁性有序介孔炭在优化合成工艺技术参数、提高药物负载量和靶向释药应用趋势方面提供理论导向。  相似文献   

17.
Hollow bioactive glass spheres with mesoporous shells were prepared by using dual soft templates, a diblock co‐polymer poly(styrene‐b‐acrylic acid) (PS‐b‐PAA) and a cationic surfactant cetyltrimethylammonium bromide (CTAB). Hollow mesoporous bioactive glass (HMBG) spheres comprise the large hollow interior with vertical mesochannels in shell, which realize large uptake of drugs and their sustained release. The formation of hydroxyapatite layer on the surface of HMBG particles shows the clear evidence for promising application in bone regeneration.  相似文献   

18.
We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt‐FeCo/GC@MSS). The Pt‐FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m2 g?1, pore volume of 0.165 cm3 g?1, and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt‐FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt‐FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt‐FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity.  相似文献   

19.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   

20.
The reduction of the diameter of Bi nanowires below 10 nm has been an important target because of the theoretical prediction with regard to significant enhancement in thermoelectric performance by size reduction. In this study, we have demonstrated the usefulness of mesoporous silica with tunable pore size as a template for the preparation of thin Bi nanowires with diameters below 10 nm. Bi was deposited within the templates through a liquid phase deposition using hexane and 1,1,3,3‐tetramethyldisiloxane as a solvent and reducing agent, respectively. Bundles of thin Bi nanowires with non‐crystalline frameworks were successfully obtained after the template removal. The diameter was precisely controlled between about 6 nm and 9 nm. The judicious choices of mesoporous silica and deposition conditions are critical for the successful preparation. The reliable formation of such thin Bi nanowires reported here opens up exciting new possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号