首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the growing importance of pH‐sensitive hydrogels as drug delivery systems, biocompatible copolymeric hydrogels based N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) were designed and synthesized. These hydrogels were investigated for oral drug delivery. Radical copolymerizations of N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) with the various ratios of cross‐linking agent were carried out at 70 °C. Azabisisobutyronitrile (AIBN) was the free‐radical initiator employed and Cubane‐1,4‐dicarboxylic acid (CDA) linked to two 2‐hydroxyethyl methacrylate (HEMA) group was the crosslinking agent (CA) used for hydrogel preparations. The hydrogels were characterized by differential scanning calorimetry and FT‐IR. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model drug, olsalazine [3,3′‐azobis (6‐hydroxy benzoic acid)] (OSZ) as an azo derivative of 5‐aminosalicylic acid (5‐ASA), was entrapped in these gels and the in‐vitro release profiles were established separately in both enzyme‐free SGF and SIF. The drug‐release profiles indicated that the amount of drug released depended on the degree of swelling. The swelling was modulated by the amount of crosslinking of the polymer bonded drug (PBDs) prepared. Based on the great difference in hydrolysis rates at pH 1 and 7.4, these pH‐sensitive hydrogels appear to be good candidates for colon‐specific drug delivery.  相似文献   

2.
A biosensor based on conductive poly(pyrrole‐co‐pyrrole‐2‐carboxylic acid) [Poly(Py‐co‐PyCOOH)] copolymer film coated gold electrode was developed for the quantitative phosphate determination. Enzyme pyruvate oxidase was immobilized chemically via the functional carboxylated groups of the copolymer. The potential to be applied which is deficiency of phosphate biosensor studies for precise phosphate detection was clarified by using differential pulse voltammetry technique. Performance of the sensing ability of the biosensor was improved by optimizing cofactor/cosubstrate concentrations, polymeric film density and pH. The biosensor showed a linearity up to phosphate concentration of 5 mM, operational stability with a relative standard deviation (RSD) of 0.07 % (n=7) and accuracy of 101 % at ?0.15 V (vs. Ag/AgCl). Detection limit (LOD) and sensitivity were calculated to be 13.3 μM and 5.4 μA mM?1 cm?2, respectively by preserving 50 % of its initial response at the end of 30 days. It's performance was tested to determine phosphate concentrations in two streams of Zonguldak City in Turkey. Accuracy of phosphate measurement in stream water was found to be 91 %.  相似文献   

3.
A new method for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples has been developed using magnetic molecularly imprinted polymer nanoparticles before determination by high‐performance liquid chromatography. The Fe3O4 nanoparticles were first prepared through the chemical coprecipitation of Fe2+ and Fe3+ and then coated with a vinyl shell. Subsequently, a layer of molecularly imprinted polymers was grafted onto the vinyl‐modified magnetic nanoparticles by precipitation polymerization. FTIR spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and thermogravimetric analysis were applied to characterize the sorbent properties. Moreover, the predominant parameters affecting the magnetic solid phase extraction such as sample pH, sorption and elution times, the amount of sorbent, and composition and volume of eluent were investigated thoroughly. The maximum sorption capacity of the imprinted polymer toward p‐aminosalicylic acid was 70.9 mg/g, which is 4.5 times higher than that of the magnetic nonimprinted polymer. The magnetic molecularly imprinted polymer nanoparticles were applied for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples and satisfactory results were achieved. The results illustrate that magnetic molecularly imprinted polymer nanoparticles have a great potential in the extraction of p‐aminosalicylic acid from environmental and biological matrices.  相似文献   

4.
《Electroanalysis》2005,17(8):668-673
A self‐sampling‐and‐flow biosensor was fabricated by sandwiching a nitrocellulose strip on the working electrode side of the double‐sided microporous gold electrodes and a wicking pad on the counter electrode side. The double‐sided microporous electrodes were formed by plasma sputtering of gold on a porous nylon substrate. Sample was taken up to the enzyme‐immobilized working electrode by the capillary action of the front nitrocellulose strip dipped into the sample solution, analyzed electrochemically at the enzyme‐immobilized electrode, and diffuses out to the backside wicking pad through the micropores of the electrodes, constituting a complete flow cell device with no mechanical liquid‐transporting device. Biosensor was formed by co‐immobilizing the glucose oxidase and electron transfer mediator (ferrocene acetic acid) on the thioctic acid self‐assembled monolayer‐modified working electrode. A typical response time of the biosensor was about 5 min with the sensitivity of 2.98 nA/mM glucose, providing linear response up to 22.5 mM. To demonstrate the use of self‐sampling‐and‐flow biosensor, the consumption rate of glucose in the presence of yeast was monitored for five days.  相似文献   

5.
《Electroanalysis》2017,29(7):1810-1819
Pirarubicin (THP) is an anthracycline drug, which is mainly used in the anticancer treatment. Utilization of THP may be associated with many dangerous side effects, therefore monitoring of drug level in patients’ organism is an important aspect of chemotherapy. In our research we focused on designing of an electrochemical DNA‐based biosensor for selective detection of pirarubicin (THP). Our biosensor utilizes the ability of pirarubicin to interact with DNA double helix and the fact that THP is an electrochemically active compound. Graphite electrodes modified with DNA enable to obtain nearly three thousand times higher sensitivity (41.8⋅103 A/M) than non‐modified sensors. Furthermore, in the case of THP detection by means of bare graphite electrodes, LOD was 43.6⋅10−9 M, whereas for developed DNA biosensors ‐112⋅10‐12 M. A study of selectivity of DNA–modified biosensors was carried out in aqueous solutions containing interferents: acetaminophen (PCT) and ascorbic acid (AA) as well as in samples of fetal bovine serum (FBS) spiked with PCT and AA. In established measurement conditions one peak corresponding to THP reduction was observed, whereas no redox peaks assigned to interferents (PCT, AA) were present. These results indicate that developed biosensors are selective to pirarubicin.  相似文献   

6.
A novel microfluidic chip‐based fluorescent DNA biosensor, which utilized the electrophoretic driving mode and magnetic beads‐based “sandwich” hybridization strategy, was developed for the sensitive and ultra‐specific detection of single‐base mismatch DNA in this study. In comparison with previous biosensors, the proposed DNA biosensor has much more robust resistibility to the complex matrix of real saliva and serum samples, shorter analysis time, and much higher discrimination ability for the detection of single‐base mismatch. These features, as well as its easiness of fabrication, operation convenience, stability, better reusability, and low cost, make it a promising alternative to the SNPs genotyping/detection in clinical diagnosis. By using the biosensor, we have successfully determined oral cancer‐related DNA in saliva and serum samples without sample labeling and any preseparation or dilution with a detection limit of 5.6 × 10?11 M, a RSD (n = 5) < 5% and a discrimination factor of 3.58–4.54 for one‐base mismatch.  相似文献   

7.
An amperometric microbial biosensor for highly sensitive and selective determination of p‐nitrophenol (PNP) is reported. The biosensor consisted of PNP‐degrader Arthrobacter sp. JS443 immobilized by entrapment in Nafion polymer deposited on the top of the carbon paste electrode transducer. The biosensor was based on the measurement of the oxidation current of the intermediates 4‐nitrocatechol and 1,2,4‐benzenetriol formed by the highly selective oxidation of PNP by Arthrobacter sp. The sensor signal and response time were optimized with applied potential of +0.4 V (vs. Ag/AgCl reference electrode) and 0.03 mg of cells and operating in pH 7.5, 50 mM citrate‐phosphate buffer at room temperature. When operated at optimized conditions, the Arthrobacter sp.‐based biosensor measured as low as 5 nM (0.7 ppb) of PNP. The biosensor demonstrated excellent selectivity with no interference from phenolic compounds such as 2‐nitrophenol, phenol and 3‐chlorophenol but was interfered by 3‐nitrophenol and 3‐methyl‐4‐nitrophenol. It had good precision and intra‐ and inter‐day reproducibility, accuracy and was stable up to 3 days when stored in buffer at 4 °C. When applied for measurement in water from Lake Elsinore, CA, the results obtained were in excellent agreement with the amounts determined spectrophotometrically.  相似文献   

8.
The aim of this work is to develop a drug‐loaded silk fibroin fibrous membrane (DSFM) that can be attached to the surface of an anal fistula plug to improve the treatment of Crohn's disease (CD). Curcumin (CUR) and 5‐aminosalicylic acid (5‐ASA)‐loaded silk fibroin (SF) membranes are coaxially electrospun onto the surface of a braided silk filament plug. The membranes show a predominant structure of random coil and silk I conformation. The concentration of CUR/5‐ASA (weight ratio of 1/1) in the SF solution is optimized to 0.4, 0.9, and 1.9 wt%. The morphologies, secondary structures, and in vitro drug release properties of the membranes are examined. Sectional images of fibers in the membranes show core–shell structures. The coaxial electrospinning process does not alter the chemical characteristics of the drugs. The dual‐drugs encapsulated in the membranes are released in a steady and sustainable manner, and the cumulative release rate is improved by the increased drug loading. The membranes exhibit no cytotoxicity, thereafter increase the viability of human fibroblasts on the DSFMs. These SF membranes with core–shell structure and functional encapsulation of CUR and 5‐ASA should be useful for further studies toward the treatment of CD.  相似文献   

9.
Enzyme‐based electrochemical biosensors with sufficient sensing specificity are useful analytical tools for detection of biologically important substances in complicated systems. Here, we present the design of a nano‐hybrid biosensor for the specific and sensitive detection of methyl parathion (MP). The nano‐hybrid sensing film was prepared via the formation of Au nanoparticals (AuNPs) on silica nanoparticles (SiNPs), mixing with multiwall carbon nanotube (MWNTs) and subsequent immobilization of methyl parathion degrading enzyme (MPD). The fabrication procedure was characterized by scanning electron images, linear scan voltammetry and electrochemical impedance spectroscopy. The combined MPD exhibited high affinity to it substrate and thus a selective, sensitive, fast and cheap method for determination of MP, quantitatively was proposed. A significant synergistic effect of nano‐hybrid on the biosensor performance was observed in biosensing MP. The square wave voltammetric responses displayed well defined peaks, linearly proportional to the concentration of MP in the range from 0.001 to 5.0 μg/mL with a detection limit of 0.3 ng/mL. The proposed biosensor also showed good precision and reproducibility, acceptable stability and accuracy in garlic samples analysis. It provided a platform for the simple and fast construction of biosensors with good performance for the determination of enzyme‐specific electroactive species.  相似文献   

10.
A disposable acetaminophen biosensor based on inkjet‐printed CNT electrodes (IJPCNT) modified with amidase/cerium dioxide@graphene nanoribbons composite was developed (ACeO2@GNR/IJPCNT). The enzyme amidase A was used for the first time as a recognition element. Inkjet‐printed CNT electrodes served as a basis for the construction of a biosensor that enables droplet detection using 5 μL sample volume. The biosensor showed high selectivity, sensitivity, a low detection limit of 0.18 μM and a wide working linear range from 1 to 100 μM. The proposed approach allows fast and reliable detection of acetaminophen in biological fluids with negligible matrix effect and remarkable reproducibility.  相似文献   

11.
An electrochemical drug‐DNA biosensor was developed for the detection of interaction between the anti‐cancer drug, Temozolomide (TMZ), and DNA sequences by using Differential Pulse Voltammetry at the graphite electrode surfaces. TMZ is a pro‐drug and an alkylating agent that crosses the blood‐brain barrier, so it is mainly used for brain cancers treatment. In this study, we aim to develop a‐proof‐of‐concept study to investigate the effect of TMZ on formerly methylated DNA sequences since TMZ shows its anti‐cancer activity by methylating the DNA. Interaction between TMZ and DNA causes localized distortion of DNA away from an idealized B‐form, resulting in a wider major groove and greater steric accessibility of functional groups in the base of the groove. According to the results, TMZ behaves as a ‘hybridization indicator’ because of its different electrochemical behavior to different strands of DNA. After interaction with TMZ, hybrid (double stranded DNA‐dsDNA) signals decreased dramatically whereas probe (single stranded DNA‐ssDNA) and control signals remain almost unchanged. The signal differences enabled us to distinguish ssDNA and dsDNA without using a label or tag. It is the first study to demonstrate the interaction between the TMZ and dsDNA created from probe and target. We use specific oligonucleotides sequences instead of using long dsDNA sequences.  相似文献   

12.
In the present study a chitosan/ionic liquid modified pencil graphite electrode (CHIT‐IL‐PGEs) was developed for the first time for enhanced electrochemical monitoring of nucleic acid, and the interaction of the anticancer drug Mitomycin C (MC) and calf thymus double stranded DNA (dsDNA) by measuring the oxidation signals of MC and guanine in the same voltammetric scale. Differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to evaluate the performance of the CHIT‐IL based biosensor on electrochemical monitoring of DNA, and drug‐DNA interaction. The experimental parameters, IL, dsDNA and MC concentration and the interaction time were then optimized.  相似文献   

13.
《Electroanalysis》2005,17(23):2147-2155
A laccase biosensor, in which the enzyme was immobilized on N‐succinimidyl‐3‐thiopropionate (NSTP)‐modified gold electrodes, is reported. Two different approaches for the preparation of N‐succinimidyl‐terminated monolayers were evaluated: a) activation of a preformed 3‐mercaptopropionic acid (MPA) SAM by reaction with 1‐(3‐dimethylaminopropyl)‐ 3‐ethylcarbodiimide (EDC) and N‐hydroxysulfosuccinimide (NHS); b) assembling of dithiobisuccinimidyl propionate (DTSP). NSTP‐modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Biosensors prepared by covalent binding of the enzyme and by cross‐linking with glutaraldehyde atop NSTP‐modified electrodes were compared in terms of sensitivity and operational range for caffeic acid. A much better analytical performance was found using the latter approach. Variables affecting the amperometric detection (enzyme loading, pH and applied potential) were optimized. The operational stability and characteristics of functioning of the laccase biosensor in terms of repeatability of the amperometric measurements, reproducibility with different biosensors and useful lifetime, were evaluated. The kinetic parameters of the enzyme reactions and the analytical characteristics of the corresponding calibration plots were calculated for eight phenolic compounds. Limits of detection of 0.07 μM, 0.05 μM and 0.09 μM were obtained for caffeic acid, catechol and 3,4‐dihydroxyphenylacetic acid (DOPAC), respectively. The practical usefulness of the developed biosensor was evaluated by estimating the “pool” of phenolic compounds in olive oil mill wastewaters (OMW).  相似文献   

14.
Human 15‐lipoxygenase‐1 (15‐LOX‐1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity‐based probes of 15‐LOX‐1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15‐LOX‐1 activity‐based probe for the efficient activity‐based labeling of recombinant 15‐LOX‐1. 15‐LOX‐1‐dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity‐based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity‐based labeling of 15‐LOX‐1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.  相似文献   

15.
A novel, low‐cost, label‐free impedance biosensor based on gold interdigitated electrodes (GIE) was developed for detection of lead. This sensor was developed by immobilizing GR‐5 DNAzymes onto the GIE surface through Au‐S bonding. In the presence of lead, the substrate strand was cleaved into two parts at the RNA site (rA) and caused changes in the interfacial properties of the GIE, resulting in a corresponding decrease in the impedance magnitude. Thus, by measuring the decrease, the concentration of lead ion can be determined. And coupled the GIE with GR‐5 DNAzyme recognition, our proposed lead biosensor exhibited a high sensitivity with a detection limit of 6.61 nM, which is much lower than the 72 nM defined as the maximum contamination level (MCL) of lead ions in drinking water by The United States Environmental Protection Agency (EPA), at the same time, with a linear range from 10–100 nM and a prominent selectivity against other heavy metal ions. What's more, different from the traditional way, the GIE are made on printed circuit board (PCB), this makes the biosensor has the advantages of simplicity, low cost and easy mass production, and it can easily be widely used.  相似文献   

16.
An odor‐based sensor system that exploits the metabolic enzyme tryptophanase (TPase) as the key component is reported. This enzyme is able to convert an odorless substrate like S‐methyl‐L ‐cysteine or L ‐tryptophan into the odorous products methyl mercaptan or indole. To make a biosensor, TPase was biotinylated so that it could be coupled with a molecular recognition element, such as an antibody, to develop an ELISA‐like assay. This method was used for the detection of an antibody present in nM concentrations by the human nose. TPase can also be combined with the enzyme pyridoxal kinase (PKase) for use in a coupled assay to detect adenosine 5′‐triphosphate (ATP). When ATP is present in the low μM concentration range, the coupled enzymatic system generates an odor that is easily detectable by the human nose. Biotinylated TPase can be combined with various biotin‐labeled molecular recognition elements, thereby enabling a broad range of applications for this odor‐based reporting system.  相似文献   

17.
In this study, a turn‐on paper‐based optical analytical system with a rapid, sensitive and quantitative response for glucose was developed. The luminescence sensing material, crystalline iridium(III)‐Zn(II) coordination polymers, or Ir‐Zne, was grown electrochemically on stainless steel mesh and then deposited on filter paper. This sensing substrate was subsequently built up under glucose oxidase encapsulated in hydrogel and then immobilized on egg membrane with the layer‐by‐layer method. Once the glucose solution was dropped onto the paper, the oxygen content was depleted simultaneously with a concomitant increase in the phosphorescence of Ir‐Zne. The detection limit for glucose was 0.05 mM. The linear dynamic range for the determination of glucose was 0.05–8.0 mM with a correlation coefficient (R2) of 0.9956 (y=68.11 [glucose]?14.72). The response time was about 0.12 s, and the sample volume was less than 5 μL. The effects of mesh size, buffer concentration, pH, enzyme concentration, temperature, and interference, and the stability of the biosensor, have also been studied in detail. Finally, the biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

18.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

19.
A uric acid (UA) electrochemical biosensor based on the Cu‐Au alloy nanoparticles (NPs) and uricase was developed. The electrodeposition technique of Cu‐Au alloy NPs was selected to be a convenient potentiostatic method at –0.8 V in a single solution containing both Au(III) and Cu2+. Cyclic voltammetry and scanning electron microscopy proved the successful deposition of Cu‐Au alloy NPs. EIS demonstrated the good conductivity of Cu‐Au alloy NPs. The enzyme was immobilized on the surface of Cu‐Au alloy NPs modified electrode by casting with chitosan solution. The ultimate biosensor showed linear amperometric response towards UA in the concentration range of 3.0 to 26.0 μM with a detection limit of 0.8 μM. The main feature of the biosensor was its short response time, which was attributed to the good conductivity of Cu‐Au alloy NPs. Furthermore, the biosensor could avoid the interference of ascorbic acid and oxygen.  相似文献   

20.
《Electroanalysis》2006,18(16):1572-1577
An amperometric tyrosinase biosensor was developed via a simple and effective immobilization method using the self‐assembled monolayers (SAMs) technique. The organic monolayer film was first formed by the spontaneous assembly of thiolor sulfur compound (1,6‐hexanedithiol, HDT) from solution onto gold electrode. When these thiol‐rich surfaces were exposed to Au colloid, the sulfurs form strong bonds to gold nanoparticles, anchoring the clusters to the electrode substrate. After the assembly of gold nanoparticles layer, a new nano‐Au surface was obtained. Thus, the tyrosinase could be immobilized onto the electrode. The tyrosinase retained its activity well in such an immobilization matrix. The various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady‐state current within 10 s, and the trend in the sensitivity of different phenolic compounds was as follows: catechol>phenol>p‐cresol. In addition, the apparent Michaelis–Menten constant (K and the stability of the enzyme electrode were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号