首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical functionalization of single‐walled carbon nanotubes (SWNTs) has constructed plenty of new structures with useful properties. But the modification was often confined to organic molecules, either by covalence or noncovalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: chromium hexacyanoferrate (Cr hcf). The resulting Cr hcf/SWNTs nanocomposites were confirmed by Field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Cr hcf crystallites are observed to be finely attached to the SWNTs. The electrochemical properties of Cr hcf/SWNTs nanocomposites were also investigated. The nanocomposites modified glassy carbon (GC) electrode shows high electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5 μM to 10 mM (R=0.9989). In addition, the sensor has good stability and reproducibility.  相似文献   

2.
This article first reports the preparation of a Prussian blue (PB) modified electrode with improved electrochemical properties at the functionalized glass carbon electrode (GC) by imidazolium based ionic liquid. The molecular ionic liquid film on the GC electrode has been found to influence the electrodeposition of PB by a way of enhancement of voltammetric currents, suggesting efficient electrodepositon. Such efficient electrodeposition was caused by the static electric effect which existed between the positively charged imidazolium group on the electrode surface and the negative ferric‐ferricyanide in solution. Compared with the PB/GC electrode, the PB/[Bmim][Cl]/GC electrode showed much better electrochemical stability after successive potential cycling for 250 cycles. A comparative study on amperometric responses of both electrodes to reduce H2O2 was also investigated. PB/[Bmim][Cl]/GC electrode showed a better electrocatalytic performance to H2O2 with wider linear detection range and higher sensitivity than that at the electrode without [Bmim][Cl]. Furthermore, the kinetics for both electrodes was discussed. The PB/[Bmim][Cl]/GC electrode possessed a greater diffusion coefficient.  相似文献   

3.
Prussian blue analogue nanoparticles doped with Ce(III) (CeHCF) have been synthesized using chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA) as protective matrix and were cast onto a glassy carbon electrode surface directly. Transmission electron microscopy, UV‐Vis absorption spectroscopy and resonance Rayleigh scattering technique were employed to characterize the PB analogue nanoparticles protected with CS and PDDA. Compared with the bare glassy carbon electrode, the modified electrode exhibited excellent performances for determining H2O2. This work demonstrates the feasibility of the CS‐PDDA‐CeHCF nanoparticles modified glassy carbon electrode for practical sensing applications.  相似文献   

4.
A slow reaction process has been successfully used to synthesize Prussian blue/single‐walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10?6–6.0×10?3 M with a response time less than 4 s and a detection limit of 0.5 μM. PB/SWNTs modified electrochemical sensors are promising candidates for cost‐effective in the hydrazine assays.  相似文献   

5.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

6.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

7.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance.  相似文献   

8.
Three‐dimensional porous platinum (Ptpor) films are prepared based on Pt electrodeposition on polyaniline (PANI) modified electrodes followed by selective dissolution of PANI with HNO3. Electrochemical quartz crystal microbalance data suggest that the PANI‐H2PtCl6 interaction involves redox and coordination reactions, depending on the working potential. The Ptpor shows better electrocatalytic performance than the Pt/PANI and conventionally electrodeposited Pt. The Ptpor modified glassy carbon electrode (GCE) can electrocatalyze the oxidation of H2O2 with a sensitivity of 414 µA cm?2 mM?1 and a detection limit of 9 nM, and the chitosan‐glucose oxidase/Ptpor/GCE can sense glucose with a sensitivity of 93.4 µA cm?2 mM?1.  相似文献   

9.
MnO2/graphene nanocomposites with different morphologies were synthesized and the petal‐shaped nanosheet MnO2/graphene composite was developed as an electrode material for nonenzymatic hydrogen peroxide (H2O2) sensor. The morphology, structure, composition, and hydrophilicity of the resulting products were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and the contact angle tests. In addition, the fabricated MnO2/graphene composites could be used as catalysts for the electrochemical oxidation of H2O2. Cyclic voltammogram (CV) experiments indicated that MnO2/graphene‐modified electrode showed good electrocatalytic activity towards both the oxidation and reduction of H2O2 in a neutral environment. Amperometric response results illustrated that this nonenzymatic sensor had excellent anti‐interference ability and displayed two linear ranges from 10 to 90 µM and from 0.2 to 0.9 mM with a detection limit of 2 µM.  相似文献   

10.
A signal‐enhanced label‐free electrochemical immunosensor was constructed by the employment of Prussian blue doped silica dioxide (PB‐SiO2) nanocomposite. At first, PB‐SiO2 nanocomposite which was produced by using a microemulsion method was used to obtain a nanostructural monolayer on a glassy carbon electrode (GCE) surface. Next amino‐functionalized interface were prepared by self‐assembling 3‐aminopropyltriethoxy silane (APTES) on the PB‐SiO2 nanoparticle surface. Then chitosan stabled gold nanoparticle (CS‐nanoAu) was subsequently attached, while the entire surface was finally loaded with neuron‐specific enolase antibody (anti‐NSE) via the adsorption of gold nanoparticle. The sensitivity of the proposed immunosensor has greatly improved as the PB‐SiO2 nanostructural sensing film provides plenty of active sites which might catalyze the reduction of H2O2. The immunosensor exhibited good linear behavior in the concentration range from 0.25–5.0 and 5.0–75 ng/mL for the quantitative analysis of neuron‐specific enolase (NSE), a putative serum marker of small‐cell lung carcinoma (SCLC), with a limit of detection of 0.08 ng/mL. The resulting NSE immunosensor showed high sensitivity and long‐term lifetime which can be attributed to the extremely high catalytic activity and biocompatibility of CS‐nanoAu/APTES/PB‐SiO2 nanostructural multilayers.  相似文献   

11.
A novel nanocomposite electrode based on hierarchical 3D porous MnO2?TiO2 for the application in hydrogen peroxide (H2O2) sensors has been explored. This electrode was fabricated by growing TiO2 cross‐linked nanowires on a commercial fluorine tin oxide (FTO) glass via a hydrothermal process and subsequent deposition of 3D honeycomb‐like MnO2 nanowalls using an electrodeposition method (denoted as 3D MNS‐TNW@FTO). The obtained 3D MNS‐TNW@FTO electrode was characterized by scanning electron microscopy (SEM), Raman spectroscopy, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). Based on such a unique 3D porous framework and the existence of MnO2, the electrode demonstrates a good performance in the detection of H2O2, with two linear ranges from 9.8 to 125 μM and 125 μM–1.0 mM, a good selectivity of 8.02 μA mM?1 cm?2, and a low detection limit of 4.5 μM. In addition, the simplicity of the developed low‐cost fabrication process provides an efficient method for the mass production of electrocatalytical MnO2?TiO2 nanocomposites on commercial FTO glass for H2O2 sensing applications and can be adapted for other electrochemical sensors for various biochemical targets. It thus is beneficial for the practical usage in bioanalysis.  相似文献   

12.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

13.
A layer‐by‐layer (LbL) thin film composed of poly(ethyleneimine) (PEI) and carboxymethyl cellulose (CMC) was prepared on the surface of a gold (Au) disk electrode and the LbL layer was impregnated with hemin to fabricate amperometric hydrogen peroxide (H2O2) sensors. Hemin can be easily immobilized in the LbL layer by immersing the LbL film‐coated electrode in the hemin solution. The hemin‐modified electrode thus prepared exhibited an amperometric response to H2O2 on the basis of the electrochemical reduction catalyzed by hemin. The output current of the hemin‐modified electrode depended on the concentration of H2O2 over the range of 0.005–1.0 mM. Thus, the LbL film composed of PEI and CMC was found to be an excellent material for the facile preparation of hemin‐based H2O2 sensors.  相似文献   

14.
《Analytical letters》2012,45(5):875-886
Abstract

Platinum nanowires (PtNW) were prepared by an electrodeposition strategy using nanopore alumina template. The nanowires prepared were dispersed in chitosan (CHIT) solution and stably immobilized onto the surface of glassy carbon electrode (GCE). The electrochemical behavior of PtNW‐modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H2O2) are investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As an application example, the glucose oxidase was immobilized onto the surface of PtNW‐modified electrode through cross‐linking by glutaric dialdehyde. The detection of glucose was performed in phosphate buffer at –0.2 V. The resulting glucose biosensor exhibited a short response time (<8 s), with a linear range of 10?5?10?2 M and detection limit of 5×10?6 M.  相似文献   

15.
Xiaoling Xiao  Wu Lu  Xin Yao 《Electroanalysis》2008,20(20):2247-2252
The direct electron transfer between hemoglobin (Hb) and the glassy carbon electrode (GC) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and TiO2 nanorods (TiO2‐NRs). TiO2‐NRs greatly promote the electron transfer between Hb and GC, which contribute to the higher redox peaks. UV‐vis spectra result indicated the Hb entrapped in the composite film well keep its native structure. The immobilized Hb remains its bioelectrocatalytical activity to the reduction of H2O2 with a lower detection limit. A novel, sensitive, reproducible and stable electrochemical biosensing platform of H2O2 based on Hb‐TiO2‐CHT electrode is explored.  相似文献   

16.
A simple method was developed to prepare a cobalt(II) Schiff base (Co(salen))/large mesoporous carbon (LMC) composite film. The structure and electrocatalytic performance of the Co(salen)/LMC film were investigated by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The Co(salen)/LMC film exhibits high electrocatalytic activity toward H2O2, such as low detection limit (8.5×10?7 M) and wide linear concentration range (2.0×10?6–8.9×10?3 M). Furthermore, glucose oxidase (GOD) was self‐assembled on the surface of the Co(salen)/LMC film modified electrode. Determination of glucose in human blood serum with satisfying result was investigated by the resulting biosensor.  相似文献   

17.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

18.
In this paper, self‐assembled Prussian blue nanoparticles (PBNPs) on carbon ceramic electrode (CCE) were developed as a high sensitive hydrogen peroxide (H2O2) electrochemical sensor. The PBNPs film was prepared by a simple dipping method. The morphology of the PBNPs‐modified CCE was characterized by scanning electron microscopy (SEM). The self‐assembled PB film exhibited sufficient mechanical, electrochemical stability and high sensitivity in compare with other PB based H2O2 sensors. The sensor showed a good linear response for H2O2 over the concentration range 1 μM–0.26 mM with a detection limit of ca. 0.7 μM (S/N=3), and sensitivity of 754.6 mA M?1 cm?2. This work demonstrates the feasibility of self‐assembled PBNPs‐modified CCE for practical sensing applications.  相似文献   

19.
Stabilisation of electrochemically deposited Prussian blue (PB) films on glassy carbon (GC) electrodes has been investigated and an enhancement in the stability of the PB films is reported if the electrodes are treated with tetrabutylammonium toluene-4-sulfonate (TTS) in the electrochemical activation step following the electrodeposition. A multi-enzyme PB based biosensor for sucrose detection was made in order to demonstrate that PB films can be coupled with an oxidase system. A tri-enzyme system, comprising glucose oxidase, mutarotase and invertase, was crosslinked with glutaraldehyde and bovine albumin serum on the PB modified glassy carbon electrode. The deposited PB operated as an electrocatalyst for electrochemical reduction of hydrogen peroxide, the final product of the enzyme reaction sequence. The electrochemical response was studied using flow injection analysis for the determination of sucrose, glucose and H2O2. The optimal concentrations of the immobilisation mixture was standardised as 8 U of glucose oxidase, 8 U of mutarotase, 16 U of invertase, 0.5% glutaraldehyde (0.025 μl) and 0.5% BSA (0.025 mg) in a final volume of 5 μl applied at the electrode surface (0.066 cm2). The biosensor exhibited a linear response for sucrose (4-800 μM), glucose (2-800 μM) and H2O2 (1-800 μM) and the detection limit was 4.5, 1.5 and 0.5 μM for sucrose, glucose and H2O2, respectively. The sample throughput was ca. 60 samples h−1. An increase in the operational and storage stability of the sucrose biosensor was also noted when the PB modified electrodes were conditioned in phosphate buffer containing 0.05 M TTS during the preparation of the PB films.  相似文献   

20.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号