首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactivity of Fischer alkenyl carbenes toward 8‐azaheptafulvenes is examined. Alkenyl carbenes react with 8‐azaheptafulvenes with complete regio‐ and stereoselectivity through formal [8+3] and [8+2] heterocyclization reactions, which show an unprecedented dependence on the Cβ substituent at the alkenyl carbene complex. Thus, the formal [8+3] heterocyclization reaction is completely favored in carbene complexes that bear a coordinating moiety to give tetrahydrocyclohepta[b]pyridin‐2‐ones. Otherwise, alkenyl carbenes that lack appropriate coordinating groups undergo a formal [8+2] cyclization with 8‐azaheptafulvenes to give compounds that bear a tetrahydroazaazulene structure. A likely mechanism for these reactions would follow well‐established models and would involve a 1,4‐addition/cyclization in the case of the [8+2] cyclization or a 1,2‐addition/[1,2] shift–metal‐promoted cyclization for the [8+3] reaction. The presence of a coordinating moiety in the carbene would favor the [1,2] metal shift through transition‐state stabilization to lead to the [8+3] product. All these processes provide an entry into the tetrahydroazaazulene and cycloheptapyridone frameworks present in the structure of biologically active molecules.  相似文献   

2.
We examined the reactivity of dimethylaminodiazafulvene 1 toward Fischer alkenylcarbene 2 and alkynylcarbene 3 complexes. Diazafulvene 1 reacts with alkenylcarbenes 2 through a formal [6+3] heterocyclization in a regio- and stereoselective manner to afford dihydroimidazo[1,2-a]pyridines 4. Acid-promoted dimethylamine elimination in compound 4 c gives rise to the aromatic imidazo pyridine 5. A likely mechanism for this reaction is a 1,2-nucleophilic addition/[1,2]-shift metal-promoted cyclization sequence. On the other hand, diazafulvene 1 and alkynyl carbenes 3 undergo a [6+2] cyclization to afford pyrrolo[1,2-a]imidazole carbene complex 6 that can be readily oxidized to the corresponding esters 7. When enynylcarbenes 3 e-i are treated with diazafulvene 1, consecutive and diastereoselective [6+2]/cyclopentannulation cyclization reactions take place affording new polycyclic complex systems 8, 9, and 12 that can be appropriately demetallated to the corresponding imidazole-based polyfused systems 10, 11, and 13 respectively. Finally, enynylcarbenes 3 d,f undergo consecutive [6+2]/[5+1] cyclization reactions with diazafulvene 1 and tBuNC, respectively, to yield tetracyclic adducts 14 and 15. All these processes result in high yields and provide a route to the preparation of imidazopyridines and pyrroloimidazoles as well as other polycyclic molecules that contain imidazole groups, which are interesting from a pharmacological and biological point of view.  相似文献   

3.
A cascade of cyclization/cycloaddition reactions was triggered by addition of protic oxygen nucleophiles ROH 2 (RO = CH3CO2, PhCO2, PhO) to [2-(1-cyclohexenyl)ethynyl]carbene complexes 1b and 1c (M=W, Cr, respectively), affording highly strained "dimers" 11/11' and "trimers" 12 of the carbene ligand. The first reaction step involved the formation of 1-metalla1,3,5-hexatrienes 7, which readily gave tetrahydroindenes 8 by pi cyclization and extrusion of the metal unit. "Dimers" 11/11' were generated from tetrahydroindenes 8 by a highly exo selective [4+2] cycloaddition of compounds 1b and 1c to afford 1-metalla-1,3,5-hexatriene intermediates 9, and a spontaneous pi cyclization of the latter compounds involving the disengagement of the metal unit. Propenylidene cyclohexenes 13/13' were formed in "ene"-type side reactions to the pi cyclization of 1-metalla-1,3,5-hexatrienes 7, by loss of the metal unit. "Dimers" 11 were transformed into "trimers" 12 by a [4+2] cycloaddition and subsequent pi-cyclization of the resulting 1-metalla-1,3,5-hexatriene system. The course of the reaction was elucidated by means of model reactions with (2-phenylethynyl)carbene complex 14, in which 1-metalla-1,3,5-hexatriene intermediates 16 and 17 were isolated and characterized. Alkynyl benzene derivatives 19 were obtained by an unprecedented ring-expansion of a cyclopentadiene unit of "dimers" 11a and 11c, involving the insertion of a carbene carbon atom of compound 14 into a C=C bond. A reaction cascade leading to "dimers" 24/24' could also be triggered by treatment of compounds 2 with [2-(1-cycloheptenyl)ethynyl]carbene tungsten complex 1d.  相似文献   

4.
We highlight the versatility of non‐heteroatom‐stabilized tungsten–carbene complexes 3 synthesized in situ, which have been used in a modular approach to access 2‐benzazepinium isolable intermediates 5 . By employing very mild conditions, benzazepinium derivatives 5 have been obtained in high yield from simple compounds, such as acetylides 2 , Fischer‐type alkoxycarbenes 1 , and phenylimines 4 . The process, involving a formal [4+3] heterocycloaddition, occurs in a totally regioselective manner, which differs from the approach previously observed in similar procedures for other carbene analogues. This work, which involves three components, reveals a control of the reactivity of non‐heteroatom‐stabilized carbene complexes 3 ([4+3] vs. [2+2]‐heterocycloaddition reactions) depending on the acetylide substitution pattern. The influence of the substitution pattern in the behavior of the complexes has been computationally analyzed and rationalized. Finally, elaboration of the 2‐benzazepinium intermediates allows access to 3H‐benzo[c]azepines 6 and 3H‐1,2‐dihydrobenzo[c]azepines 7 – 9 with high control of the substitution of the nine positions of the heterocycle.  相似文献   

5.
A highly efficient strategy for the formation of medium‐sized‐ring ethers and amines based on a gold‐catalyzed cascade reaction, involving enynyl ester isomerization and intramolecular [3+2] cyclization, has been developed. Various multisubstituted medium‐sized‐ring unsaturated ethers and amines were obtained through this transformation. This method represents one of the relatively few transition metal catalyzed intramolecular cycloaddition reactions for medium‐sized ring synthesis.  相似文献   

6.
Treatment of arylidene malononitriles 2A – C with 1‐cyanomethylisoquinoline 1 afforded 4‐amino‐2‐arylpyrido[2,1‐a ]isoquinoline‐1,3‐dicarbonitrile derivatives 5A – C , which converted to formimidates 6A – C via reaction with triethylorthoformate. Treatment of the latter compounds with hydrazine hydrate gave the corresponding amino–imino compounds 7A – C , which underwent Dimroth rearrangement to afford 13‐aryl‐1‐hydrazinylpyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinoline‐12‐carbonitrile 8A – C . The latter reacted with aldehyde to give 9a – i . Oxidative cyclization of the latter compounds 9a – i gave [1,2,4]triazolo[4″,3″:1′,6′]‐pyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinolines 10a , d , g . Such compounds isomerized to the thermodynamically more stable isomers [1,2,4]triazolo[1″,5″:1′,6′]pyrimido[5′,4′:5,6]‐pyrido[2,1‐a ]isoquinolines 11a , d , g . Antimicrobial activities for some compounds were studied.  相似文献   

7.
Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.  相似文献   

8.
2-Alkynylanilinocarbene chromium complexes 1–7 bearing a rigid arene C2 spacer between the aminocarbene and alkyne units were prepared from pentacarbonyl(aroyl)chromates(–I), acetyl bromide, and 2-alkynylanilines. They undergo intramolecular cyclization the course of which depends on the substitution pattern at the alkyne terminus. A tandem alkyne insertion into the metal–carbene bond/carbonylation sequence affords Cr(CO)3-coordinated 3-indolylketenes 8, 9, 12–14 by using a bulky substituent; the rate of the reaction increases with N-alkylation. Less bulky n-alkynylanilinocarbene complexes 4, 5 exhibit two competing carbene annulation sequences: Benzannulation leads to benzo[a]carbazoles 15, 16 , whereas cyclopentannulation without prior carbonylation furnishes indeno[1,2-b]indoles 17, 18 .  相似文献   

9.
[2,3]-Sigmatropic rearrangement reaction involving sulfonium ylide (Doyle–Kirmse reaction) generated from metal carbenes represents one of the powerful methods for the construction of C(sp3)−S and C−C bonds. Although significant advances have been achieved, the asymmetric versions via the generation of sulfonium ylides from metal carbenes have been rarely reported to date, and they have so far been limited to diazo compounds as metal carbene precursors. Here, we describe a copper-catalyzed enantioselective Doyle–Kirmse reaction via azide-ynamide cyclization, leading to the practical and divergent assembly of an array of chiral [1,4]thiazino[3,2-b]indoles bearing a quaternary carbon stereocenter in generally moderate to excellent yields and excellent enantioselectivities. Importantly, this protocol represents a unique catalytic asymmetric Doyle–Kirmse reaction via a non-diazo approach and an unprecedented asymmetric [2,3]-sigmatropic rearrangement via α-imino metal carbenes.  相似文献   

10.
Reaction of alpha,beta-unsaturated methoxycarbene complexes 1 and 11 with methyl ketone lithium enolates 2 leads to the corresponding five-membered carbocyclic compounds 4 or diast-4 and 12. The influence of the solvent and/or cosolvent (PMDTA), which turned out to be crucial to direct the reaction to 4 or diast-4, is studied, and a tentative mechanism according to these facts is proposed. In addition, the reaction of carbene complex 1a with alkynyl methyl ketone lithium enolates can be directed to the formal [3 + 2] or [4 + 1] cyclization products by a slight variation of the reaction conditions. Finally, consecutive three-component coupling reactions with carbene complex 1a, lithium enolates 2, and aldehydes 18 to give, in a diastereoselective way, hydroxy carbonyl compounds 19 and tricyclic polyethers 20 are presented.  相似文献   

11.
The metalloradical activation of o‐aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)‐carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium‐sized ring structures. Herein we make use of the intrinsic radical‐type reactivity of cobalt(III)‐carbene radical intermediates in the [CoII(TPP)]‐catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8‐membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8‐membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis‐allylic/benzallylic C?H bond to the carbene radical, followed by two divergent processes for ring‐closure to the two different types of 8‐membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o‐quinodimethanes (o‐QDMs) which undergo a non‐catalyzed 8π‐cyclization, DFT calculations suggest that ring‐closure to the monobenzocyclooctadienes involves a radical‐rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring‐closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt‐porphyrin catalyst.  相似文献   

12.
Synthesis and deprotonation of N‐phosphanylated[1,2,4]triazolo[4,3‐a]pyridinium triflates were investigated. Phosphanylation by t‐Bu2PCl proceeds at N1 of starting triazolo‐pyridines. According to density functional theory calculations, deprotonation of the formed salt gives abnormal carbenes, which decompose by opening of the triazole cycle. Treatment by chlorodiphenylphosphane leads to an equilibrium mixture of N1‐ and N2‐phosphanylated salts, which under addition of base yields normal carbene that rapidly rearranges to form C‐phosphanylated product. Mechanisms of the reactions are discussed.  相似文献   

13.
The enynyl‐substituted 2,3‐dihydroisoxazoles (‘isoxazolines') 9 – 14 were prepared by highly (Z)‐selective Peterson olefination reaction from the corresponding carbaldehydes 6 – 8 . On short‐time thermolysis (280 – 406°/10 s) the TMS derivatives 9 – 11 give rise to the annulated pyrrolines 18 – 20 , which, in some cases, suffer CH4 elimination affording the pyrroles 15 – 17 . In contrast, thermolysis of the terminal alkyne derivatives 12 – 14 leads to the bicyclic compounds 21 – 23 . The reaction pathways are discussed on the basis of the formation of conjugated azomethine ylides as key intermediates, which either undergo a 1,5‐cyclization to 18 – 20 or a 1,7‐ring‐closure affording cycloallene intermediates of type V , which are further transformed into the azepino pyrroles 21 – 23 .  相似文献   

14.
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.

A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.  相似文献   

15.
The N‐heterocyclic carbene (NHC) catalyzed redox formal [2+2] cycloaddition between α‐aroyloxyaldehydes and perfluoroketones, followed by ring‐opening in situ delivers a variety of perfluorinated β‐hydroxycarbonyl compounds in good yield, and excellent diastereo‐ and enantioselectivity. Through a reductive work‐up and subsequent cyclization, this protocol offers access to highly substituted fluorinated oxetanes in two steps and in high ee.  相似文献   

16.
Higher‐order cycloaddition reactions constitute an efficient approach towards the construction of medium to large ring systems. However, enantioselective versions of these transformations remain scarce, which hampers their deployment in medicinal chemistry, or any other discipline in which homochirality is deemed crucial. Herein, we report a novel method for the production of enantiomerically enriched cycloheptatrienes fused to a pyrrolidone ring on the basis of an isothiourea‐catalyzed periselective [8+2] cycloaddition reaction between chiral ammonium enolates (generated in situ from carboxylic acids) and azaheptafulvenes. The resulting bicyclic compounds can be hydrogenated, but, most remarkably, they can also undergo completely regioselective [4+2] cycloaddition with active dienophiles to give architecturally complex polycyclic compounds in a straightforward manner.  相似文献   

17.
The reaction of alkynes with [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Me, Ph, Cy) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, allyl carbene or butadienyl carbene complexes. These reactions involve the migration of the phosphine ligand or a facile 1,2 hydrogen shift. Both reactions proceed via a metallacyclopentatriene complex. If no alpha C[bond]H bonds are accessible, allyl carbenes are formed, while in the presence of alpha C[bond]H bonds butadienyl carbenes are typically obtained. With diphenylacetylene, on the other hand, a cyclobutadiene complex is formed. A different reaction pathway is encountered with HC[triple bond]CSiMe(3), ethynylferrocene (HC[triple bond]CFc), and ethynylruthenocene (HC[triple bond]CRc). Whereas the reaction of [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Ph and Cy) with HC[triple bond]CSiMe(3) affords a vinylidene complex, with HC[triple bond]CFc and HC[triple bond]CRc this reaction does not stop at the vinylidene stage but subsequent cycloaddition yields allenyl carbene complexes. This latter C[bond]C bond formation is effected by strong electronic coupling of the metallocene moiety with the conjugated allenyl carbene unit, which facilitates transient vinylidene formation with subsequent alkyne insertion into the Ru[double bond]C bond. The vinylidene intermediate appears only in the presence of bulky substituents of the phosphine coligand. For the small R=Me, head-to-tail coupling between two alkyne molecules involving phosphine migration is preferred, giving the more usual allyl carbene complexes. X-ray structures of representative complexes are presented. A reasonable mechanism for the formation of both allyl and allenyl carbenes has been established by means of DFT calculations. During the formation of allyl and allenyl carbenes, metallacyclopentatriene and vinylidene complexes, respectively, are crucial intermediates.  相似文献   

18.
Alkyne-tethered imidazole and 1,2,4-triazole-based N-heterocyclic carbene precursors have been prepared and studies of the intramolecular reactions of carbenes are performed. Products consistent with intramolecular cyclizations and subsequent rearrangements were observed. Mechanistic studies using crossover experiments showed that the products did arise from intramolecular carbene additions. The reactions are proposed to go through vinylogous diaminocarbene intermediates similar to vinylogous dialkoxycarbenes formed during Boger cycloaddition reactions. Imidazole substituted dienes were observed to be the major products of tandem cyclization and elimination reactions that were observed for imidazole-based N-heterocyclic carbenes.  相似文献   

19.
A facile synthesis of a series of new quinoline‐8‐carbaldehyde compounds, namely 8‐formyl‐2‐(phenoxymethyl)quinoline‐3‐carboxylic acids ( 4a – 4h ) and 13‐oxo‐6,13‐dihydro[1]benzoxepino[3,4‐b]quinoline‐8‐carbaldehyde ( 5a – 5g ) is described, involving the one‐pot synthesis reaction of ethyl 2‐(chloromethyl)‐8‐formylquinoline‐3‐carboxylate ( 3 ) with substituted phenols followed by the intramolecular cyclization reaction via the treatment with polyphosphoric acid (PPA). Quinoline‐8‐carbaldehydes 4a – 4h and 5a – 5g are novel and their structures were supported by IR, 1H NMR, 13C NMR, MS and elemental analysis.  相似文献   

20.
The carbene or carbocationic nature of the intermediates in the gold-catalyzed cycloisomerization of 1,5-enynes can be revealed, depending on the ligands on the gold catalysts. Gold complexes with highly electron-donating ligands promote reactions that proceed via intermediates with carbene-like character, leading to products with a bicyclo[3.1.0]hexene skeleton. The intermediate cyclopropyl endo-gold carbenes formed in this cyclization have been trapped, for the first time, to give biscyclopropane derivatives in a reaction that proceeds in a concerted fashion, according to DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号