首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organogels that are self‐assembled from simple peptide molecules are an interesting class of nano‐ and mesoscale soft matter with simplicity and functionality. Investigating the precise roles of the organic solvents and their effects on stabilization of the formed organogel is an important topic for the development of low‐molecular‐weight gelators. We report the structural transition of an organogel self‐assembled from a single dipeptide building block, diphenylalanine (L ‐Phe‐L ‐Phe, FF), in toluene into a flower‐like microcrystal merely by introducing ethanol as a co‐solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals. Multiple characterization techniques were used to reveal the transitions. The results indicate that there are different molecular‐packing modes formed in the gels and in the microcrystals. Further studies show that the co‐solvent, ethanol, which has a higher polarity than toluene, might be involved in the formation of hydrogen bonds during molecular self‐assembly of the dipeptide in mixed solvents, thus leading to the transition of organogels into microcrystals. The structural transformation modulated by the co‐solvent might have a potential implication in controllable molecular self‐assembly.  相似文献   

2.
3.
A facile polymerization of an allyl‐functionalized N‐carboxyanhydride (NCA) monomer is utilized to construct an A‐B‐A‐type triblock structure containing β‐sheet‐rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single‐walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide‐based organogels.  相似文献   

4.
We demonstrate that an inorganic lanthanide ion (Tb3+) or organic dye molecules were encapsulated in situ into diphenylalanine (FF) organogels by a general, simple, and efficient co‐assembly process, which generated peptide‐based hybrid nanobelts with a range of colored emissions. In the presence of a photosensitizer (salicylic acid), the organogel can serve as an excellent molecular‐donor scaffold to investigate FRET to Tb3+. More importantly, heat treatment or water induction instigated a morphology transition from nanofibers to nanobelts, after which the participation of guest molecules in the FF assembly was promoted and the stability and photoluminescence emission of the composite organogels were enhanced.  相似文献   

5.
6.
In this work, two rigid, multiple tetraphenylethene (TPE)‐substituted, π‐conjugated, snowflake‐shaped luminophores BT and BPT were facilely synthesized by using a 6‐fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller‐shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent.  相似文献   

7.
A series of poly(aryl ether) dendrons with a monopyrrolo‐tetrathiafulvalene unit linked through an acyl hydrazone linkage were designed and synthesized as low molecular mass organogelators (LMOGs). Two of the dendrons could gelate the aromatic solvents and some solvent mixtures, but the others could not gel all solvents tested except for n‐pentanol. A subtle change on the molecular structure produces a great influence on the gelation behavior. Note that the dendrons could form the stable gel in the DMSO/water mixture without thermal treatment and could also form the binary gel with fullerene (C60) in toluene. The formed gels undergo a reversible gel–sol phase transition upon exposure to external stimuli, such as temperature and chemical oxidation/reduction. A number of experiments (SEM, FTIR spectroscopy, 1H NMR spectroscopy, and UV/Vis absorption spectroscopy, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional fibrillar aggregates and maintain rectangular molecular‐packing mode in organogels. The hydrogen bonding, π–π, and donor–acceptor interactions were found to be the main driving forces for formation of the gels. Moreover, the gel system exhibited gel‐induced enhanced emission (GIEE) property in the visible region in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by introduction of C60.  相似文献   

8.
Self‐assembly structure, stability, hydrogen‐bonding interaction, and optical properties of a new class of low molecular weight organogelators (LMOGs) formed by salicylanilides 3 and 4 have been investigated by field‐emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD), UV/Vis absorption and photoluminescence, as well as theoretical studies by DFT and semiempirical calculations with CI (AM1/PECI=8) methods. It was found that salicylanilides form gels in nonpolar solvents due to π‐stacking interaction complemented by the presence of both inter‐ and intramolecular hydrogen bonding. The supramolecular arrangement in these organogels predicted by XRD shows lamellar and hexagonal columnar structures for gelators 3 and 4 , respectively. Of particular interest is the observation of significant fluorescence enhancement accompanying gelation, which was ascribed to the formation of J‐aggregates and inhibition of intramolecular rotation in the gel state.  相似文献   

9.
10.
Fluorescent nanoparticles (FNPs) are obtained in water by self‐assembly from a polymeric ionic liquid, fluorescent carboxylate moiety, and a surfactant through two main supramolecular interactions, that is, ionic bonds and hydrophobic/hydrophilic interactions. The hydrophobicity of the surfactant is tunable and a highly hydrophobic surfactant increases the fluorescence intensity and stability of the FNPs. The fluorescence of the FNPs is sensitive to a quenching effect by various ions with high selectivity, and consequently, they may be used as sensors. The self‐assembly approach used to generate the FNPs is considerably simpler than other methods based on more challenging synthetic methods and the flexibility of the approach should allow a wide and diverse range of FNPs to be prepared with specific sensor applications.  相似文献   

11.
A new class of poly(benzyl ether) dendrimers, decorated in their cores with N‐Boc‐protected 1,2‐diphenylethylenediamine groups, were synthesized and fully characterized. It was found that the gelation capability of these dendrimers was highly dependent on dendrimer generation, and the second‐generation dendrimer (R,R)‐G2DPENBoc proved to be a highly efficient organogelator. A number of experiments (SEM, TEM, FTIR spectroscopy, 1H NMR spectroscopy, rheological measurements, UV/Vis absorption spectroscopy, CD, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional nanostructures in organogels. The hydrogen bonding, π–π, and solvophobic interactions were found to be the main driving forces for formation of the gels. Most interestingly, these dendritic organogels exhibited smart multiple‐stimulus‐responsive behavior upon exposure to environmental stimuli such as temperature, anions, and mechanical stress.  相似文献   

12.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


13.
A simple method for the synthesis of new bithienylethenes bearing a functional group on the cyclopentene moiety is developed. Three new photochromic compounds ( 4a , 4b , 4c ) have been successfully synthesized through this simple method, and exhibit good photochromic properties with alternate irradiation of ultraviolet and visible light. Furthermore, the ?uorescence of compound 4a , which bears a quinoline unit on the cyclopentene, can be modulated via optic and proton dual inputs. Upon excitation by 320 nm light, 4a emits a strong ?uorescence at 404 nm. After irradiation with 254 nm light, the emission intensity is reduced due to the ?uorescence resonance energy transfers (FRET) from quinoline unit to bithienylethene unit. Moreover, on addition of H+, the fluorescence is quenched completely due to the protonation of the quinoline. In addition, both the FRET and protonation process are reversible, which indicates a potential application in molecular switches and logic gates.  相似文献   

14.
A facile approach to the design of stimuli‐responsive supramolecular gels (SRSGs) termed double‐metal‐ion competitive coordination control is reported. By this means, the fluorescence signals and guest‐selective responsiveness of the SRSGs are controlled by the competitive coordination of two different metal ions with the gelators and the target guest. To demonstrate this approach, a gelator G2 based on multiple self‐assembly driving forces was synthesized. G2 could form Ca2+‐coordinated metallogel CaG with strong aggregation‐induced emission (AIE). Doping of CaG with Cu2+ results in AIE quenching of CaG and formation of Ca2+‐ and Cu2+‐based metallogel CaCuG. CaCuG could fluorescently detect CN? with specific selectivity through the competitive coordination of CN? with the Cu2+ and the coordination of Ca2+ with G2 again. This approach may open up routes to novel stimuli‐responsive supramolecular materials.  相似文献   

15.
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake.  相似文献   

16.
17.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


18.
A new class of peripherally multiple aromatic ester‐functionalized poly(benzyl ether) dendrons and/or dendrimers with different focal point substituents, surface groups, interior structures, as well as different generations have been synthesized and their structure–property relationships with respect to their gelation ability have been investigated systematically. Most of these dendrons are able to gel organic solvents over a wide polarity range. Evident dendritic effects were observed not only in gelation capability but also in thermotropic, morphological, and rheological characterizations. It was disclosed that subtle changes in peripheral ester functionalities and interior dendritic structures affected the gelation behavior of the dendrons significantly. Among all the dendrons studied, the second‐ and third‐generation dendrons G0G2‐Me and G0G3‐Me with dimethyl isophthalates (DMIP) as peripheral groups exhibited the best capability in gelation, and stable gels were formed in more than 22 aromatic and polar organic solvents. The lowest critical gelation concentration (CGC) reached 2.0 mg mL?1, indicating that approximately 1.35×104 solvent molecules could be entrapped by one dendritic molecule. Further study on driving forces in gel formation was carried out by using a combination of single‐crystal/powder X‐ray diffraction (XRD) analysis and concentration‐dependent (CD)/temperature‐dependent (TD) 1H NMR spectroscopy. The results obtained from these experiments revealed that the multiple π–π stacking of extended π‐systems due to the peripheral DMIP rings, cooperatively assisted by non‐conventional hydrogen‐bonding, is the key contributor in the formation of the highly ordered supramolecular and fibrillar network. In addition, these dendritic organogels exhibited unexpected thixotropic‐responsive properties, which make them promising candidates with potential applications in the field of intelligent soft materials.  相似文献   

19.
20.
Highly ordered supramolecular microfibers were constructed through a simple ionic self‐assembly strategy from complexes of the N‐tetradecyl‐N‐methylpyrrolidinium bromide (C14MPB) surface‐active ionic liquid and the small methyl orange (MO) dye molecule, with the aid of patent blue VF sodium salt. By using scanning electron microscopy and polarized optical microscopy, the width of these self‐assembled microfibers is observed to be about 1 to 5 μm and their length is from tens of micrometers to almost a millimeter. The 1H NMR spectra of the microfibers indicates that the supramolecular complexes are composed of C14MPB and MO in equal molar ratio. The electrostatic, hydrophobic, and π–π stacking interactions are regarded as the main driving forces for the formation of microfibers. Furthermore, through characterization by using confocal fluorescence microscopy, the microfibers were observed to show strong fluorescent properties and may find potential applications in many fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号