首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

2.
By employing silver salts with a weakly coordinating anion Ag[A] ([A]=[FAl{OC12F15}3], [Al{OC(CF3)3}4]), two phosphaalkynes could be coordinated side‐on to a bare silver(I) center to form the unprecedented homoleptic complexes [Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 1 ) and [Ag(η2‐P≡CtBu)2][Al{OC(CF3)3}4] ( 2 ). DFT calculations show that the perpendicular arrangement in 1 is the minimum energy structure of the coordination of the two phosphaalkynes to a silver atom, whereas for 2 a unique square‐planar coordination mode of the phosphaalkynes at Ag+ was found. Reactions with donor molecules yield the trigonally planar coordinated silver salts [((CH3)2CO)Ag(η2‐P≡CtBu)2][FAl{OC12F15}3] ( 3 ) and [(C7H8)2Ag(η2‐P≡CtBu)][FAl{OC12F15}3] ( 4 ). All of the compounds were comprehensively characterized in solution and in the solid state.  相似文献   

3.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

4.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

5.
Reactions between the 1,3‐diphosphete complex [Cp′′′Co(η4‐P2C2tBu2)] ( 1 ) and Ag[Al{OC(CF3)3}4] (Ag[pftb]) were carried out under different conditions. In CH2Cl2, the unprecedented 1,2‐diphosphete isomerization product [Ag2{Cp′′′Co(μ,η411‐1,2‐P2C2tBu2)}2{Cp′′′Co(μ,η41‐1,2‐P2C2tBu2)}2]⋅2[pftb] ( 2 ) could be isolated. In diffusion experiments of 1 in n‐hexane with Ag[pftb] in CH2Cl2, the triphosphacobaltocenium complex [Cp′′′Co(η5‐P3C2tBu2)][pftb] ( 4 ) and the phosphirenylium complex [Cp′′′Co(η3‐PC2tBu2)][pftb] ( 5 ) were obtained, showing a ring expansion and a ring contraction, respectively, under mild conditions. Moreover, addition of pyridine to the Ag complex 2 led to the new 1,2‐diphosphete complex [Cp′′′Co(η4‐1,2‐P2C2tBu2)] ( 3 ). Compound 3 is also formed by thermolysis of 1 , making it a promising method for this type of isomerization. 1,2‐Diphosphete complexes like 3 are thermodynamically more stable but also synthetically more elusive than their 1,3‐isomer counterparts.  相似文献   

6.
Reactions of the sandwich complexes [Cp*Fe(η5‐E5)] (Cp*=η5‐C5Me5; E=P ( 1 ), As ( 2 )) with the monovalent Group 13 metals Tl+, In+, and Ga+ containing the weakly coordinating anion [TEF] ([TEF]=[Al{OC(CF3)3}4]?) are described. Here, the one‐dimensional coordination polymers [M(μ,η51‐E5FeCp*)3]n[TEF]n (E=P, M=Tl ( 3 a ), In ( 3 b ), Ga ( 3 c ); E=As, M=Tl ( 4 a ), In ( 4 b )) are obtained as sole products in good yields. All products were analyzed by single‐crystal X‐ray diffraction, revealing a similar assembly of the products with η5‐bound E5 ligands and very weak σ‐interactions between one P or As atom of the ring to the neighbored Group 13 metal cation. By exchanging the [TEF] anion of 4 a for the larger [FAl] anion ([FAl]=[FAl{OC6F10(C6F5)}3]?), the coordination compound [Tl{(η5‐As5)FeCp*}3][FAl] ( 5 ) without any σ‐interactions of the As5‐ring is obtained. All products are readily soluble in CH2Cl2 and exhibit a dynamic coordination behavior in solution, which is supported by NMR spectroscopy and ESI‐MS spectrometry as well as by osmometric molecular‐weight determination. For a better understanding of the proceeding equilibrium DFT calculations of the cationic complexes were performed for the gas phase and in solution. Furthermore, the 31P{1H} magic‐angle spinning (MAS) NMR spectra of 3 a–c are presented and the first crystal structure of the starting material 2 was determined.  相似文献   

7.
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η22‐P2)] ( A ), [CpM(CO)23‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy.  相似文献   

8.
An unprecedented cationic supramolecule [(Cp′′Fe(η5‐P5))12{CuNCMe}8]8+ 2.66 nm in diameter was selectively isolated as a salt of the weakly coordinating anion [Al{OC(CF3)3}4]? for the first time and characterized by X‐ray structure analysis, PXRD, NMR spectroscopy, and mass spectrometry. Its metal‐deficient core contains the lowest possible number of Cu atoms to connect 12 pentaphosphaferrocene units, providing a supramolecule with fullerene topology which, topologically, also represents the simplest homologue in the family of metal‐deficient pentaphosphaferrocene‐based supramolecules [{CpRFe(η5‐P5)}12(CuX)20?n]. The 12 vacant metal sites between the cyclo‐P5 rings, the largest number attained to date, make this compound a facile precursor for potential inner and outer modifications of the core as well as for functionalization via the substitution of labile acetonitrile ligands.  相似文献   

9.
The reaction of the organometallic diarsene complex [Cp2Mo2(CO)42-As2)] ( 1 ) with Ag[Al{OC(CF3)3}4] (Ag[TEF]) yielded the AgI monomer [Ag(η2- 1 )3][TEF] ( 2 ). This compound exhibits dynamic behavior in solution, which allows directed selective synthesis of unprecedented organometallic–organic hybrid assemblies upon its reaction with N-donor organic molecules by a stepwise pathway, which is supported by DFT calculations. Accordingly, the reaction of 2 with 2,2′-bipyrimidine ( L1 ) yielded the dicationic molecular compound [{(η2- 1 )2Ag}2(μ- L1 )][TEF]2 ( 3 ) or the 1D polymer [{(η2- 1 )Ag}(μ- L1 )]n[TEF]n ( 4 ) depending on the ratio of the reactants. However, its reactions with the pyridine-based linkers 4,4′-bipyridine ( L2 ), 1,2-bis(4-pyridyl)ethylene ( L3 ) and 1,2-bis(4-pyridyl)ethyne ( L4 ) allowed the formation of the 2D polymers [{(η2- 1 )Ag}2(μ- Lx )3]n[TEF]2n [ Lx=L2 ( 5 ), L3 ( 6 ), L4 ( 7 ), respectively]. Additionally, this concept was extended to step-by-step one-pot reactions of 1 , [Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] ([Ag(CH3CN)3][TEFCl]) and linkers L2 – L4 to produce the 2D polymers [{(η2- 1 )Ag}2(μ, Lx )3]n[TEFCl]2n [ Lx = L2 ( 8 ), L3 ( 9 ), L4 ( 10 ), respectively].  相似文献   

10.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

11.
The betain‐like carbodiphosphorane CS2 adduct S2CC(PPh3)2 ( 1 ) reacts with Ag(I) salts which contain weakly coordinating anions such as [BF4]? or [Al{OC(CF3)3}4]? to produce the cluster compounds [Ag6{S2CC(PPh3)2}4][BF4]6 ( 2 ) and [Ag4{S2CC(PPh3)2}4][Al{OC(CF3)3}4]4 ( 3 ), respectively, as orange yellow crystals containing solvent molecules. In the solid state the Ag4 unit in 3 forms a tetrahedron, and in the Ag6 core of 2 two of the opposite edges of the tetrahedron are bridged by Ag+ ions. The clusters are held together by argentophilic interactions, and each sulfur atom of 1 is coordinated to four (as in 2 ) or three (as in 3 ) silver atoms. The compounds are characterized by IR and 31P NMR spectroscopic studies and by X‐ray diffraction analyses.  相似文献   

12.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with diphenyldiazomethane leads to [{W(CO)5}Cp*P=NN{W(CO)5}=CPh2] ( 2 ). Compound 2 is a rare example of a phosphadiazadiene ligand (R‐P=N?N=CR′R′′) complex. At temperatures above 0 °C, 2 decomposes into the complex [{W(CO)5}PCp*{N(H)N=CPh2)2] ( 3 ), among other species. The reaction of the pentelidene complexes [Cp*E{W(CO)5}2] (E=P, As) with diazomethane (CH2NN) proceeds differently. For the arsinidene complex ( 1 b ), only the arsaalkene complex 4 b [{W(CO)5}21:2‐(Cp*)As=CH2}] is formed. The reaction with the phosphinidene complex ( 1 a ) results in three products, the two phosphaalkene complexes [{W(CO)5}21:2‐(R)P=CH2}] ( 4 a : R=Cp*, 5 : R=H) and the triazaphosphole derivative [{W(CO)5}P(Cp*)‐CH2‐N{W(CO)5}=N‐N(N=CH2)] ( 6 a ). The phosphaalkene complex ( 4 a ) and the arsaalkene complex ( 4 b ) are not stable at room temperature and decompose to the complexes [{W(CO)5}4(CH2=E?E=CH2)] ( 7 a : E=P, 7 b : E=As), which are the first examples of complexes with parent 2,3‐diphospha‐1,3‐butadiene and 2,3‐diarsa‐1,3‐butadiene ligands.  相似文献   

13.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) (Cp*=C5Me5) with the anionic cyclo-Pn ligand complex [(η3-P3)Nb(ODipp)3] ( 2 , Dipp=2,6-diisopropylphenyl) resulted in the formation of [{W(CO)5}233:1:1-P4Cp*}Nb(ODipp)3] ( 3 ), which represents an unprecedented example of a ring expansion of a polyphosphorus-ligand complex initiated by a phosphinidene complex. Furthermore, the reaction of the pnictinidene complexes [Cp*E{W(CO)5}2] (E=P: 1 a , As: 1 b ) with the neutral complex [Cp′′′Co(η4-P4)] (Cp′′′=1,2,4-tBu3C5H2) led to a cyclo-P4E ring (E=P, As) through the insertion of the pentel atom into the cyclo-P4 ligand. Starting from 1 a , the two isomers [Cp′′′Co(μ34:1:1-P5Cp*){W(CO)5}2] ( 5 a , b ), and from 1 b , the three isomers [Cp′′′Co(μ34:1:1-AsP4Cp*){W(CO)5}2] ( 6 a – c ) with unprecedented cyclo-P4E ligands (E=P, As) were isolated. The complexes 6 a – c represent unique examples of ring expansions which lead to new mixed five-membered cyclo-P4As ligands. The possible reaction pathways for the formation of 5 a , b and 6 a – c were investigated by a combination of temperature-dependent 31P{1H} NMR studies and DFT calculations.  相似文献   

14.
The reaction of the organometallic diarsene complex [Cp2Mo2(CO)4(μ,η2-As2)] ( B ) (Cp = C5H5) with Ag[FAl{OC6F10(C6F5)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]), respectively, yields three unprecedented supramolecular assemblies [(η2- B )4Ag2][FAl]2 ( 4 ), [(μ,η12- B )32- B )2Ag3][TEF]3 ( 5 ) and [(μ,η12- B )4Ag3][TEF]3 ( 6 ). These products are only composed of the complexes B and AgI. Moreover, compounds 5 and 6 are the only supramolecular assemblies featuring B as a linking unit, and the first examples of [AgI]3 units stabilized by organometallic bichelating ligands. According to DFT calculations, complex B coordinates to metal centers through both the As lone pair and the As−As σ-bond thus showing this unique feature of this diarsene ligand.  相似文献   

15.
A chemically non‐innocent pyrrole‐based trianionic (ONO)3? pincer ligand within [(pyr‐ONO)TiCl(thf)2] ( 2 ) can access the dianionic [(3H‐pyr‐ONO)TiCl2(thf)] ( 1‐THF ) and monoanionic [(3H,4H‐pyr‐ONO)TiCl2(OEt2)][B{3,5‐(CF3)2C6H3}4] ( 3‐Et2O ) states through remote protonation of the pyrrole γ‐C π‐bonds. The homoleptic [(3H‐pyr‐ONO)2Zr] ( 4 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy in solution. The protonation of 4 by [H(OEt2)2][B{C6H3(CF3)2}4] yields [(3H,4H‐pyr‐ONO)(3H‐pyr‐ONO)Zr][B{3,5‐(CF3)2C6H3}4] ( 5 ), thus demonstrating the storage of three protons.  相似文献   

16.
Reactions of divalent Zn‐Hg metal ions with 1,3‐imidazolidine‐2‐thione (imdtH2) in 1 : 2 molar ratio have formed monomeric complexes, [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), [Cd((η1‐SimdtH2)2I2] ( 2 ), [Cd(η1‐S‐imdtH2)2Br2] ( 3 ), and [Hg(η1‐S‐imdtH2)2I2] ( 4 ). Complexes 1 – 4 , have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H, NMR) and x‐ray crystallography ( 1 ‐ 4 ). Hydrogen bonding between oxygen of acetate and imino hydrogen of ligand, {N(2)–H(2C)···O(2)#} in 1 , ring CH and imino hydrogen, {C(2A)–H(2A)···Br(2)#} in 3 have formed H‐bonded dimers. Similarly, the interactions between molecular units of complexes 2 and 4 have yielded 2D polymers. The polymerization occurs via intermolecular interactions between thione sulfur and imino hydrogen, {N(2)–H(2)···S(1)#}, imino hydrogen and the iodine atom, {NH(1)···I(2)#} in 2 and imino hydrogen – iodine atom {N(2A)–H(2A)···I(2)} and I···I interaction in 4 . Crystal data: [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), C10H18N4O4S2Zn, orthorhombic, Pbcn, a = 9.3854(7) Å, b = 12.4647(10) Å, c = 13.2263(11) Å; V = 1547.3(2) Å3, Z = 4, R = 0.0280 [Cd((η1‐S‐imdtH2)2I2] ( 2 ), C6H12CdI2N4S2, orthorhombic, Pnma, a = 13.8487(10) Å, b = 14.4232(11) Å, c = 7.0659(5) Å; Z = 4, V = 1411.36(18) Å3, R = 0.0186.  相似文献   

17.
The novel phosphonyl‐substituted ferrocene derivatives [Fe(η5‐Cp)(η5‐C5H3{P(O)(O‐iPr)2}2‐1,2)] ( Fc1,2 ) and [Fe{η5‐C5H4P(O)(O‐iPr)2}2] ( Fc1,1′ ) react with SnCl2, SnCl4, and SnPh2Cl2, giving the corresponding complexes [(Fc1,2)2SnCl][SnCl3] ( 1 ), [{(Fc1,1′)SnCl2}n] ( 2 ), [(Fc1,1′)SnCl4] ( 3 ), [{(Fc1,1′)SnPh2Cl2}n] ( 4 ), and [(Fc1,2)SnCl4] ( 5 ), respectively. The compounds are characterized by elemental analyses, 1H, 13C, 31P, 119Sn NMR and IR spectroscopy, 31P and 119Sn CP‐MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single‐crystal as well as powder X‐ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc1,1′ and Fc1,2 towards tin(II) chloride.  相似文献   

18.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

19.
The thermolysis of Cp′′′Ta(CO)4 with white phosphorus (P4) gives access to [{Cp′′′Ta}2(μ,η2 : 2 : 2 : 2 : 1 : 1-P8)] ( A ), representing the first complex containing a cyclooctatetraene-like (COT) cyclo-P8 ligand. While ring sizes of n >6 have remained elusive for cyclo-Pn structural motifs, the choice of the transition metal, co-ligand and reaction conditions allowed the isolation of A . Reactivity investigations reveal its versatile coordination behaviour as well as its redox properties. Oxidation leads to dimerization to afford [{Cp′′′Ta}442 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1-P16)][TEF]2 ( 4 , TEF=[Al(OC{CF3}3)4]). Reduction, however, leads to the fission of one P−P bond in A followed by rapid dimerization to form [K@[2.2.2]cryptand]2[{Cp′′′Ta}442 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1-P16)] ( 5 ), which features an unprecedented chain-type P16 ligand. Lastly, A serves as a P2 synthon, via ring contraction to the triple-decker complex [{Cp′′′Ta}2(μ,η6 : 6-P6)] ( B ).  相似文献   

20.
Complexes of Titanium — Synthesis, Structure, and Fluxional Behaviour of CpTi{η6‐C5H4=C(p‐Tol)2}Cl (Cp′ = Cp*, Cp) The reaction of Cp′TiCl3 (C′ = Cp* or Cp) with magnesium and 6, 6‐di‐para‐tolylpentafulvene generates good yields of pentafulvene complexes Cp*Ti{η6‐C5H4=C(p‐Tol)2}Cl ( 4 ) and CpTi{η6‐C5H4=C(p‐Tol)2}Cl ( 5 ), respectively. The crystal and molecular structure of 4 have been determined from X‐ray data and exhibits compared to known η6‐pentafulvene complexes an unusual large Ti—C(p‐Tol)2 (Fv)‐distance (2.535(5)Å) evoked by the bulky substituents at the exocyclic carbon. Dynamic 1H‐NMR and spin saturation transfer experiments point out a rotation of the fulvene ligand around the Ti—Ct2 axis (Ct2 = centroid of the fulvene ring carbon atoms) with an activation barrier ΔGC = 60.6 ± 0.5 kJ mol−1 (TC = 314 ± 2 K). For 5 this barrier is significantly larger. Analogous dynamic behaviour is well known for diene complexes, but to our knowledge, it is here first‐time described for a pentafulvene complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号